Proceedings of CARI 2016 109

User Interactions in Dynamic Processes

Modeling User Interactions in Dynamic Collaborative
Processes using Active Workspaces

Nsaibirni Robert Fondze Jr* — Gietan Texier™

*LIRIMA, University of Yaounde 1
PO Box 812, Yaounde, Cameroon
Centre Pasteur of Cameroon
nsairobby @ gmail.org

“ Centre d’épidémiologie et de santé publique des armées (CESPA)
UMR 912 - SESSTIM - INSERM/IRD/Aix-Marseille Université
gaetan.texier @univ-amu.fr

ABSTRACT. Flexibility and change at both design- and run-time are fast becoming the Rule rather
than the Exception in Business Process Models. This is attributed to the continuous advances in
domain knowledge, the increase in expert knowledge, and the diverse and heterogeneous nature of
contextual variables. In such processes, several users with possibly heterogeneous profiles collab-
orate to achieve set goals on a processes mostly designed on-the-fly. A model for such processes
should thus natively support human interactions. We show in this paper how the Active Workspaces
model proposed by Badouel et al. for distributed collaborative systems supports these interactions.

RESUME. La flexibilité et la changement pendant la conception et I'éxécution sont de plus en plus
centrale dans les modéles des Business Process. Ceci est di aux avancées continues des con-
naissances dans divers domaines, a 'augmentation des connaissances des experts, et de la nature
hétérogénes et multiple des variables contextuelles. Dans ces processus, plusieurs utilisateurs ayant
des profiles hétérogénes collaborent a des fins communs sur un processus défini progressivement.
Un modéle pour de tels processus doit donc supporter nativement les interactions utilisateur. Nous
montrons dans ce papier comment le modéle des Active Workspaces proposé par Badouel et al. pour
la modélisation des tels processus support les interactions utilisateurs.

KEYWORDS : Collaborative Business Process, Human Interactions Patterns, Active Workspaces

MOTS-CLES : Processus Collaboratif, Interactions Utilisateurs, Active Workspaces

110 Proceedings of CARI 2016

1. Introduction

Flexibility and change are fast becoming the Rule rather than the Exception in Busi-
ness Process Models. As domain knowledge advances and expert knowledge increases,
data and process definitions are prone to change. The need for dynamic process models is
continuously being felt. Moreover, it is safe to say that dynamic process models increase
user satisfaction and motivation at work, and positively influence productivity.

In [16] processes are classified as tightly-framed, loosely-framed, adhoc-framed, or
unframed, depending on their predictable and repetitive nature, and on the degree of dy-
namism they require. The move from tightly-framed process models to unframed process
models is characterized by the increasing facilities to manage uncertainty and exceptions,
and the increasing influence of users and expert-knowledge in process design and enact-
ment.

‘We focus on adhoc-framed and/or unframed domains, where users carry out processes
in a fair degree of uncertainty[2][16] because processes cannot be completely modelled
at design time either due to their large numbers or because they are highly data-centric
and will have to be discovered as data is produced and as the environment evolves. In
these domains, users (knowledge workers) are central to the different processes. They
perform various interconnected knowledge intensive tasks and have to make complex
rapid decisions on process models defined on-the-fly[2].

An example of such a domain is the disease surveillance process in public health. The
process usually goes through a continuous cycle of collecting, analyzing, and dissipating
information about a health condition of interest with the aim of detecting and handling
unwanted events in the general population[8]. Disease surveillance is characterized as be-
ing multi-user, multi-organizational, knowledge-intensive, and time-bound[8][5]. Users
and/or organizations need to collaborate and make complex rapid (timely) decisions on a
semi-structured process model[2].

Like most organizational structures, a majority of national disease surveillance sys-
tems place users in a hierarchical pyramid[8]. In each level of the pyramid, users are
grouped into Roles to carry out related work. Communication between the different lev-
els of the pyramid and between the different Roles is usually through the asynchronous
exchange of messages.

Our objective in this paper is to illustrate how user interactions (collaboration) in dy-
namic processes is supported by the Active Workspaces model[1]. We start by presenting
key forms of human interactions found in business processes, then we present a purely
distributed and informal specification of the Active-Workspaces model and show how it
supports these interactions.

2. User Interaction Patterns

By user interaction, we mean any form of communication between a user and a com-
puter or between two or more users via a computer[14]. Users interact in protean ways
to have work done on a variety of task categories. Tasks are seen as work to be done and
either originate from service calls or from work-(re)distribution in a team (work transfer
and work delegation). In the following paragraphs, we describe the different ways users
can interact. Our descriptions are inspired from the IBM’s Business Spaces [14] that

Proceedings of CARI 2016

define a human workflow attached to the underlying process model and on observations
from concrete disease surveillance scenarios at the Centre Pasteur of Cameroon.

2.1. User interactions

In dynamic processes in general, users collaborate in the context of resolving spe-
cific cases. A case is a concrete instance of a business process[1]. For example, a case
can comprise all tasks that will be invoked due to the arrival of a patient at a hospital or
due to some outbreak alarm produced by some automated disease surveillance algorithm.
One of the participating users initiates the case by instantiating the main task and provid-
ing the initially needed information. He then proceeds with the initial assignments and
orchestration of tasks (work) to the other participants.

A simple description of a user’s working environments could be: each of the partici-
pating users possess a work-basket which contains pending pieces of work that have been
assigned to the user. In like manner, team-baskets are used to share work among a group
of individuals. Task definitions contain information about the roles that have the ability
to carry them out.

2.1.1. Work assignment or service request

Though users collaborate on processes in a peer-to-peer fashion, there is always a
coordinating user who besides doing work is charged with initiating processes, assign-
ing work to users, and coordinating the orchestration of the entire process. Such users
exist throughout the entire process hierarchy, each managing the coordination of work
that originates from him/her. Assigning work to some user (respectively to a group of
users) consists in placing the work description in the user’s work-basket (respectively in
a group’s work-basket).

2.1.2. Claiming/Releasing work

Users claim and carry out work placed in their work-baskets either based on the work-
priorities or on the availability of the required input. A user can on the other hand release
work placed on his/her work-basket when for some reason he is unable to carry it out.

2.1.3. Completing work

When a user claims work from his work-basket, he can either use an existing process
definition to carry out the work or define a new process to do so. In both cases, he
explicitly choses the method to use and provides the required input data. For certain
routine tasks, he uses a rule-based approach to define a default method to always apply.

2.1.4. Handling situations

One of the following situations may arise: a user might want to rollback and change
the method he applied to resolve a task, or a user might become overbooked or unavailable
or unable to complete work due to the unavailability of some input data. Such situations
are handled in one or more of the following ways: undo, redo, release work, transfer
work, delegate work, re-prioritize work. These strategies are applied to take into account
new constraints and/or facilitate and quicken decision making.

3. User Interactions in Active-Workspaces

Explicitly described in [1], the Active-Workspaces (AW) model uses attribute gram-
mars to represent tasks and their decomposition into sub-tasks. Inherited attributes are

11

112 Proceedings of CARI 2016

used to pass data from the parent to the sub-tasks while synthesized attributes are used to
return results from subtasks to parent tasks. Attributes are terms over an ordered alpha-
bet and task triggering and execution is guarded by conditions on the inherited attributes
(using First Order Logic formulas and Pattern Matching). Hence the name Guarded At-
tribute Grammars (GAGs) given to the underlying grammar on which Active-Workspaces
are built. In this section, we will show how the Active-Workspace model supports the
major aspects of user interactions presented in the previous section.

3.1. Active-Workspace: User-roles, Users, and Services

The main building block in the Active Workspaces model is the user (identified by his
Active-Workspace) and collaboration between users is materialized by the exchange of
services. Each user can play several roles. Services are attached to Roles and users only
offer services that are attached to the Roles they play. An Active-Workspace contains:

— Guarded Attribute Grammars: A (minimal) GAG is defined for each new service
in the system and copied into the workspaces of the users that offer the service (that is,
users that play the role to which the service is attached). The axiom of the GAG specifies
the name of the service and the productions (Business Rules) describe how this service
is decomposed into subtasks. A service definition contains a unique sort s (the axiom),
input variables ¢; (eventually with guards), and output variables y;.

S(t17' . ‘7tn)<y13 . ~7ym>

— Artifacts: These are process execution trees corresponding to concrete cases (work
carried out by a user in his workspace). They hold data and computations pertaining to
cases from their inception to their completion. The tree contains two types of nodes:
Closed nodes corresponding to resolved tasks or tasks for which a resolution method has
been assigned, and Open nodes corresponding tasks that await to be assigned a resolution
method. Visually, an artifact is a tree with sorted nodes X :: s, where s is the sort of node
X.

— Input Buffer: A mail box in which any service requests made to a user as well as
local variables whose values are produced in distant locations are placed. In practical
situations, it is divided into two; a personal inbox (work-basket) and a role-inbox (team-
basket). The former contains task requests made to the user directly and the latter contains
tasks made to a role the user offers which he can pick-up and execute.

— Output Buffer: Contains information produced locally and used elsewhere in the
system. This includes information about distant calls to services offered by the active-
workspace and distant synthesized attributes whose values will have to be produced lo-
cally in the active-workspace.

A task is therefore simply a guarded attribute grammar production (Business Rule). It
is identified by its name (sorr), its inherited attributes eventually with guards, its synthe-
sized attributes, and a decomposition into subtasks showing how synthesized attributes
are produced from inherited attributes. BR1 below is an example of a Business Rule.

BRI :: caseAnalysis(patient, symps, antecedents, checkRes, labResult) =
do (todo, alarm, alert) < manageAlarm(patient, symps, antecedents,
labResult, checkRes)
() - manageAlert(alert, patient, symps, checkResult)
return(todo, alarm)

Proceedings of CARI 2016

The above task caseAnalysis, extracted from the disease surveillance scenario for the
monitoring of cases of Ebola[7] depicts what an Epidemiologist does when he receives
a suspect case declaration (an Ebola outbreak alarm). This task receives as input in-
formation about the patient, the different checks carried out on him, and his laboratory
results. It is decomposed into two subtasks manageAlarm and manageAlert, and returns
two synthsized attributes todo and alarm. In like manner, we give an example of an
Active-Workspace system description.

diseaseSurveillance :: (
consultPatient|clinician],
laboratory Analysis[biologist],
caseAnalysis[epidemiologist]

)
where
clinician = Alice | Bob
epidemiologist = Ann | Paul
biologist = Frank | Mary | Alice
diseaseSurveillance :: % Modelled system
consultPatient :: % Service offered by clinicians
laboratoryAnalysis :: % Service offered by biologists
caseAnalysis :: %Service offered by epidemiologists

Three services (consultPatient, laboratoryAnalysis, and caseAnalysis) are modeled
in this system each offered by a distinct role (clinician, biologist, and epidemiologist
respectively). A total of six (6) active workspaces will be generated corresponding to
each of the users in the different roles. Parametric Business Rules are used in specifying
Business Rules that are service calls. These simply tag the rules with the attached roles.

3.2. Requesting a service and Resolving a case

3.2.1. Requesting a service

As mentioned earlier, whatever the organizational structure, users communicate es-
sentially by rendering and requesting services. Communication is enhanced in the Active
Workspaces model using variable subscriptions. Subscriptions are equations of the form
x = wu used to model variables x whose values u are produced at a distant site. Thus
when a user calls a distant service, the synthesized attributes in the service call become
subscriptions to values that will be returned by the call. Each variable has a unique de-
fined occurrence in some workspace and may have several used occurrences elsewhere.
This is enhanced using name generators that produce unique identifiers for newly created
variables in each workspace.

More formally, let us consider two users: a local user identified by his active
workspace AW, and a distant user identified by his active workspaces AW,. When a
service call is made from AW to AW5, the following takes place:

- X =s(t1,...,tn){Y1,-..,Ym) is added to the output buffer of AW, indicating the
distant service call. This is distinguished from local calls in that there exist no defining
rule for task s in AW7.

Y =s(t1,-.,tn){Y1,-..,Ym) is added to the input buffer of AW5, indicating that
a distant service call has been made at node Y. This automatically creates a local node
X and adds Y = X to input buffer of AW> indicating where this service call is rooted in
the the distant workspace.

113

114 Proceedings of CARI 2016

— x; = u; are added to the input buffer of AW7, indicating that variables x; in synthe-
sized attributes y; subscribe to the values of distant variables u;. In like manner, u; = z;
are added to the output buffer of AW, indicated variable subscriptions it will have to
fulfill. These subscriptions are fulfilled incrementally, that is, values are individually re-
turned and sent to distant subscriptions as they are produced.

3.2.2. Task orchestration bus

Resolving a Case starts from an initialisation which consists in instantiating the root
node of the main service with the axiom of the GAG. This creates an artifact with a single
open node. The subsequent steps (micro steps) captured in the Active Workspaces model
are sanctioned either by the application of business rules to open nodes or the consumption
of a fulfilled subscription from its input buffer. Either way, executing a micro step adds
data to the existing system and the only ordering on these steps is imposed by their data
dependencies.

A business rule R is applicable at an open node X if its left hand side matches X and
if any eventual logical expression on the variables in the inherited attributes evaluates to
T RUE. This operation of pattern matching produces a substitution ¢ which is a redefini-
tion of the variables in input positions in terms of variables in output positions of both the
node X and the rule R. Several rules may match the open node and the choice of which to
apply is made by the user. Once a rule is chosen, node X becomes closed and new open
nodes Xy, ..., X,, are created corresponding to subtasks on the right hand side of R. At
the base, these open nodes are concurrently handled with an implicit ordering imposed
by variable dependences. However, it is possible to add priorities, start- and due-time to
tasks and hence to nodes and recommend a certain order in the execution of these tasks.
These additions can be updated at any given moment to take into account new contextual
realities. Open nodes for which no applicable rule is found correspond to services that
have to be requested from a distant users.

Messages received at the input buffer also update the local configuration of the Ac-
tive Workspace. These messages correspond either to the reception of a service call or to
the fulfillment of a subscription. The former instantiates a root node for the correspond-
ing service in the user’s workspace while the latter recursively applies the effect of the
subscription up the artifact tree.

3.2.2.1. Case Transfer, Delegation, and Synchronization

Case Delegation is naturally supported through service calls and is modeled in GAGs
as terminal symbols and grammar axioms. A service is offered by a role and hence by
users who play the role. A user cannot call a service he offers. In other words, users cannot
call services attached to roles they play. Also, each service is designed to serve a particular
role. That is, only users who play that particular role can call the service. Summarily,
exchange of services only occur between roles and not within roles. However, users in
the same role can communicate in two ways: Case Transfer and Artifact Synchronization.

In practice, Case Transfer is employed as a strategy to handle situations related to
user unavailability and/or inability to complete work. To transfer a case, it suffices to
transfer the initial service call to the new active-workspace and update the subscriptions
accordingly. This creates a new artifact on which the distant user can start working.

Case Synchronization consists in weaving artifacts of the same service enacted in dif-
ferent workspaces. Practically, it can be used to share information between users working
on the same case (for example after a case transfer). It can be either unidirectional (a

Proceedings of CARI 2016

user shares his artifact with another user) or bidirectional two users synchronize artifacts
in their workspaces. This feature considers artifacts as aspects and applies an operation
reminiscent to the composition of aspects in aspect oriented programming.

3.2.2.2. Evolving the Active-Workspace

If we abstract the Active-Workspace model a level or two up, it becomes evident that
this model has two major separate components: a dynamic underlying guarded attribute
grammar specification, and an execution engine. New business rules, services, roles,
and users added to the underlying grammar are automatically taken into consideration
in subsequent executions of the system. This means that users can at any moment add,
remove, or change the underlying grammar and these changes are directly visible (with
no retrospective effect).

These two components form a single whole to provide users with the needed flexibility
in designing, executing, and managing tasks in their active workspaces which by nature
are perpetually evolving.

4. Discussion and Conclusion

Dynamic processes have been at the center of BPM research recently as per these re-
views: [16] and [2]. Most of these research works have focused on flexible process design
with users considered as part of the external environment[3][17][4][13][10]. A few other
works show how exceptions and to some extent, uncertainty are managed in dynamic
processes [12][9]. These works use a set of predefined exception handlers and again do
not place users at a central position. The few researchers that have carried out work on
user interactions have had to define an overlying user-workflow on a predefined process
workflow[14][17]. These effectively enhance user interactions by adding flexibility to
process enactment but lack flexibility in process design as the process has to be defined
prior to its execution.

Active workspaces provide a holistic approach to dynamic process management with
users, data, and processes being the essential building blocks. This model possesses to
varying degrees the different forms of process flexibility presented in [16]. This explains
why it naturally supports most forms of human collaboration in dynamic processes. We
have used this model to show how such interactions can be supported. It is important to
note that these operations might entail coupling the Active-Workspace model with exter-
nal databases, knowledge bases, time servers, process performance monitors, etc. These
certainly increase an overhead on the Active-Workspace model but have no negative effect
on the specifications.

5. References

[1] Eric Badouel, Loic Helouet, Georges-edouard Kouamou, Christophe Morvan, and Robert
Fondze Jr Nsaibirni. Active Workspaces : Distributed Collaborative Systems based on Guarded
Attribute Grammars. ACM SIGAPP Applied Computing Review, 2015.

[2] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. Knowledge-Intensive Processes:
Characteristics, Requirements and Analysis of Contemporary Approaches. Journal on Data
Semantics, pages 29-57, 2014.

115

116 Proceedings of CARI 2016

[3] R. Hull, E. Damaggio, F. Fournier, M. Gupta, Fenno Terry Heath, S. Hobson, M. H Linehan,
S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculin. Introducing the Guard-Stage-Milestone
Approach for Specifying Business Entity Lifecycles. In Web Services and Formal Methods -
7th International Workshop, WS-FM 2010, Hoboken, NJ, USA, volume 6551 of Lecture Notes
in Computer Science, pages 1-24. Springer, 2011.

[4] Kunzle V, Reichert M PHILharmonicFlows: towards a framework for object-aware process
management Journal of Software Maintenance and Evolution: Research and Practice,2011

[5] M.M. Wagner, L.S. Gresham, and V. Dato. Chapter 3 - case detection, outbreak detection, and
outbreak characterization. In M.M. Wagner, A.W. Moore, and R.M. Aryel, editors, Handbook
of Biosurveillance, pages 27 — 50. Academic Press, Burlington, 2006.

[6] International Society for Disease Surveillance. Final Recommendation: Core Processes and
EHR Requirements for Public Health Syndromic Surveillance. Technical report, ISDS, 2011.

[7] R. Nsaibirni, G. Texier and GE. Kouamou. Modelling Disease Surveillance using Active
Workspaces. Conference de Recherche en Informatique (CRI), Yaounde, 2015.

[8] Centers For Disease Control World Health Organization. Technical Guidelines for Intergrated
Disease Surveillance and Response in the African Region. Technical report, WHO/CDC, Geor-
gia, USA 2001.

[9] Andrea Marrella, Massimo Mecella, Sebastian Sardina SmartPM: An Adaptive Process Man-
agement System through Situation Calculus, IndiGolog, and Classical Planning Principles of
Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Con-
ference, {KR} 2014, Vienna, Austria, July 20-24, 2014

[10] Roger Atsa Etoundi, Marcel Fouda Ndjodo, and Ghislain Abessolo Aloo. A Formal
Framework for Business Process Modeling. International Journal of Computer Applications,
13(6):27-32, 2011.

[11] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. Knowledge-intensive Processes:
An overview of contemporary approaches. CEUR Workshop Proceedings, 861:33-47,2012.

[12] Reichert M, Rinderle S, Kreher U, Dadam P Adaptive Process Management with ADEPT2
ICDE, 2005

[13] ter Hofstede AHM, van der Aalst WMP, Adams M, Russell N Modern Business Process
Automation: YAWL and its Support Environment. Springer, 2009

[14] Friess Michael Business spaces for human-centric BPM , Part 1: Introduction and concepts.
IBM DeveloperWorks 2011.

[15] Roman Vaculin, Richard Hull, Terry Heath, Craig Cochran, Anil Nigam, and Piyawadee
Sukaviriya. Declarative business artifact centric modeling of decision and knowledge inten-
sive business processes. In Proceedings - IEEE International Enterprise Distributed Object
Computing Workshop, EDOC, number Edoc, pages 151-160, 2011.

[16] Wil M. P. van der Aalst. Business Process Management: A Comprehensive Survey. ISRN
Software Engineering, 2013:1-37, 2013.

[17] W.M. P. van der Aalst, M. Pesic, H. Schonenberg Declarative workflows: Balancing between
flexibility and support Computer Science - Research and Development, 2009:99-113, 2009

