Proceedings of CARI 2016 117

A Distributed Pairwise Learning

On Distributing Bayesian Personalized Ranking from
Implicit Feedback

Modou Gueye

LID

Université Cheikh Anta Diop
Dakar

Sénégal
modou2.gueye@ucad.edu.sn

ABSTRACT. Pairwise learning is a popular technique for collaborative ranking with implicit, positive
only feedback. Bayesian Personalized Ranking (BPR) was recently proposed for this task and its
ranking is among the bests. Because its learning is based on stochastic gradient descent (SGD) with
uniformly drawn pairs, it converges slowly especially in the case of a very large pool of items.

We propose an approach to distribute its computation in order to face its scalability issue.

RESUME. Le classement par pairs d’objets est une approche populaire d’apprentissage pour la re-
commandation d’objets a un individu. On se base sur I'hypothése que ce dernier s’intéresse plus a
un objet qu'il pris gu’un autre qu’il n’a pas considéré. De cette hypothése, un classement des objets
selon les intéréts qu’il porterait sur eux peut-étre appris.

Nous proposons dans ce papier, une nouvelle approche permettant de paralléliser 'apprentissage du
classement et donc de réduire considérablement le temps de calcul.

KEYWORDS : Distribution, Bayesian pairwise learning, Matrix factorization

MOTS-CLES : Distribution, Classement par pair, Factorisation de matrice

118 Proceedings of CARI 2016

1. Introduction

Collaborative ranking with implicit, positive only feedback (so called one-class col-
laborative filtering) aims to make personalized ranking by providing a user with a ranked
list of items [4]. In this kind of application, the collected data from user actions/behaviors
are in an one-class form like what they purchased, clicked on or listened. Such data are
referred as “implicit feedback” of users [2]. Contrary to the explicit ones in rating pre-
diction where users rate items, and therefore we directly know the preference relationship
between users and some items, we have here to infer user preferences from implicit feed-
backs. That say to say, we have to only consider the presence or not of some users’ actions
(e.g., purchases, clicks, or even search events) in order to rank items for a given user when
making recommendations to it.

For more formalization, let us consider an online shop and its users’ history of pur-
chases S C U x I with U the set of all its users and I the one of items to sell. The task
of the recommender system is here to provide the user v with a personalized total ranking
>, C I? of all items, where >,, has to meet the properties of a total order [9].

Collaborative ranking has been steadily receiving more attention, mostly due to the
“one-class” characteristics of collected data in various services (e.g., “bought” in Ama-
zon, “like” in Yahoo!Music, and “clic” in Google Advertisement). Bayesian Personalized
Ranking (BPR) was recently proposed for this task. It is a matrix factorization technique
which is able to learn individual ranking from implicit data. BPR is also admitted as one
of the best current RS for item recommendation [9, 5, 8, 6, 3]. It takes pairs of items as
basic units and maximize the likelihood of pairwise preferences over observed items and
unobserved items. However BPR uses stochastic gradient descent and converges slowly
especially if the pool of items is very large.

In this paper, we present a new approach to face the scalability of BPR by distributing
its computation. Our proposal can be adapted to both shared-memory configuration or
fully-distributed one. In the sequel, we first present the underlying ideas of BPR and
its generic algorithm, then we detail our method to parallelize it. Finally we show that
our proposal reduces almost proportionally the execution time according to the degree of
distribution.

2. Bayesian Personalized Ranking

The key idea of BPR is to use partial order of items to train a recommendation model,
contrary to previous works which just considered single user-item examples [2, 4]. BPR
introduces the interpretation of positive-only data as partial ordering of items. When we
observe that a user u has selected an item ¢ (e.g., user u purchases item 4 in an online
shop), we assume that this user prefers this item than the others without observed feed-
backs. Thus from this assumption, one can infer partial order of items for the user.
Figure 1 shows an example of inference. On the left side, we have a matrix of observa-
tions collected from user actions from which user specific pairwise preferences ¢ >,, j
between pairs of items can be inferred. On the right side, we present pairwise preferences
deduced from user u;. The symbol plus (+) indicates that he prefers an item than another,
while minus (-) says the contrary. For items that he has both seen, we cannot infer any
preference.

Proceedings of CARI 2016 119

i1 G2 i3 g

A 11 19 13 14
Uy vV user
2 L B 4
U
2 Uy . - 9 -
12 !
uz | v v —p
ig - ? -
Uq v v
| 2| T
Us VIV v
+—
item

Figure 1 — Preferences retrieved from positive user-item occurrences

Letbe I} := {i € I : (u,1) € S} the set of implicitly-preferred items of user u. We
can extract a pairwise preference dataset P : U x I x [by uniformly drawing for each
user couples of an implicitly-preferred item and another one without observed feedback
as follows

Pi={(ui)i € I] nje NI}

Each triplet (u, ¢,) € P implies that user u prefers item 4 than j. Due to the very large
number of possible triplets, P is usually extracted by sampling techniques.

As BPR uses matrix factorization, it represents each user u (resp. each item ¢) by a
vector p,, (resp. ¢;) of latent factors. Thus, for each triplet (u,,j) € P we have the
following order relation between the interests of « in ¢ and j:

Pu-a >pu-q, (uij) P)

Hence, the main goal of BPR’s optimization criterion (BPR-OPT) is to find an ar-
bitrary model class to maximize the following posterior probability over all triplets in
P:

BPR-OPT =~ 3 lno(fuy) +Ael©] @)
(u,i,5)€P

For simplification, we posed f.;; as py, - ql — pu- qf. O represents the parameter vector
of the arbitrary model class and Ag the model specific regularization parameters. o is
the logistic sigmoid. The latter is used to approximate to non-differentiable Heaviside
loss function [9]. Stochastic gradient descent (SGD) is used to learn the optimization
criterion. In each step the gradient over the training data in P is computed and then the
model parameters are updated with a learning rate o

9 BPR-OPT
T 0

Algorithm 1 presents the learning of the optimization criterion with SGD.

Although BPR is among the best ranking technique, it converges slowly due to its
sequential appraoch and pairs sampling, especially if the number of items is large [8].
Because that BPR relies on sampling pairs of items, its computation time grows relatively
to the size of the pool of items to carry out.

In many large applications, we have to handle matrices with millions of both users and

0«0+ 3)

120 Proceedings of CARI 2016

Algorithm 1: Learning BPR

Data: P, ©
Result: ©

Initialize O;

repeat

Draw (u, 1, j) from P;

0« 0+a((1-o(fuy) - 25 +200);

until convergence;
return ©

1
2
3
4
5
6

items, and so many entries '. At such scales, distributed algorithms for matrix factoriza-
tion are essential to achieve reasonable performance as discussed in [1]. This make BPR
not suited for web-scale applications. We propose below a way to do it by generalizing
the Distributed SGD (DSGD) of Gemulla et al. [1]. In our knowledge, there is not cur-
rently any proposition on this topic in the literature. Of course, one may think to used
DSGD-liked approaches as in [1, 7, 10]. Thus it can partition the matrix of observations
as illustrated in the left side of Figure 1 into independent blocks as in Figure 2. Indepen-
dent blocks constitute a stratum (in gray color). Therefore parallel learning may be done
on each block, stratum-by-stratum. Although this idea seems fine and was well applied
to rating prediction, that is not the case for preference ranking. Indeed here we do not
consider couples of user-item (i.e., the user and an item that he rated) but triplets (u, 7,)
where the first item is more preferred by the user than the second. Thus using DSGD lim-
its each computation node to take the items ¢ and j from only its current block. Therefore
the user-specific rankings that one will make may have partial, and block-limited order.
Indeed, in the pairwise preference dataset P, any triplet u, ¢, j where ¢ and j are in differ-
ent blocks can not be considered.

Figure 2 — Interchangeable blocks for a 3-by-3 gridded matrix

We propose a novel pair-blocks strategy which always keeps the notion of interchange-
ability of Gemulla et al. in [1]. They formulated it as two blocks which do not share any
column nor row are interchangeable (i.e., independent). Thus two SGD instances can
separately process them at the same time without any worrying. They define a stratum as
a list of interchangeable blocks. The strata are processed in turn.

In the next section, we formalize and detail our proposal based on “pair-blocks” in-
terchangeability. We show how we avoid partial, and block-limited order while ensuring
distributed computing.

1. http://2016.recsyschallenge.com/

Proceedings of CARI 2016 121

3. Distributed Bayesian Personalized Ranking

As we said above, block-based parallel gradient descent as introduced in [1, 7] is
an original approach for distributing matrix factorization. Their well-minded concept of
“interchangeability” underlies their contribution. We can define it as follows

Definition 1. Blocks interchangeability

Let be Uy and Uy to subsets of U, similarly I and I two subsets of 1. Let be B :=
Uy x I and By := Uy x Iy two data blocks. They are interchangeable iff Uy N Uy = ()
and Iy N Iy = ((i.e., they do not share any row nor column,).

From this definition, one can run operations completely in parallel on these blocks.
Hence we introduce our notion of interchangeable pair-blocks, but for convenience, we
define first our consideration of pair-block.

Definition 2. Pair-block
A pair-block p is a couple of not interchangeable blocks B, and By such as U; = Us.

Definition 3. Pair-blocks interchangeability
Two pair-blocks are interchangeable if each block of the one is interchangeable with each
block of the others.

Figure 3 shows two interchangeable pair-blocks represented with different colors. The
matrix of observations can be expressed as unions of strata. Each stratum contains a group
of interchangeable pair-blocks. In Figure 3, we list the sequence of strata that one have
to set up when targeting two processors. As one can remark in this figure, in the two last

nL oL Iy I

L
et 7

- 1

U,

Figure 3 — Interchangeable pair-blocks-based strata

strata, the couple of blocks in pair-blocks has the same block. This allows us the possi-
bility to consider any triplet (u,4,j) € P wherever the position of 7 and j in the matrix
of observation. As well as the number of block-columns is the double of the number of
processors since each processor must have its own input. Therefore the sequence of strata
must be carefully chosen in order to avoid re-using a pair-block in two different strata. Let
be n the number of processors (e.g., two processors in Figure 3), each stratum must have
its own n interchangeable pair-blocks to be processed in a distributed manner. From this
point, it is easy to compute the number of strata to made since it becomes a combination
problem. Indeed for n processors, the number Ny of strata to consider is the one of all
2-combinations of the 2n block-columns C%,, + 2n in order to cover all the triplets in P

122 Proceedings of CARI 2016

given by N, = C3, +2n =n(2n + 1).

One consequence of the use of pair-blocks is that we are able to join all any two blocks
of the same block-row. Contrary to DSGD, we can infer preference ranking for each user
over all the items. Therefore our ranking is not partial or block-limited while we are able
to process each of our pair-blocks-based stratum in parallel. The processors of computa-
tion are synchronized when starting learning on a stratum.

We called our approach of distributing bayesian personnalized ranking by DBPR. Algo-
rithm 2 details its functioning. Lines 7 to 10 are the distributed part. In Line 2 the strata

Algorithm 2: Learning DBPR

Data: P,0,n
Result: ©
1 Initialize ©;
2 Generate strata S;
3 // To balance workloads across the computing resources
4 Balance pair-blocks’ data;
5 repeat
6 foreach s € S do // We take the strata in turn
7 for ¢ € s do in parallel // Processing of pair-blocks ¢
8 Draw (u, 1, j) from P;
9 @<—@+a(<1—a(fm;j)>-%L-i-/\e@);
10 end
11 end
12 until convergence;
13 return ©

are generated and their pair-blocks’ data balanced in Line 4.

4. Experimentation

We demonstrate in this section the efficiency of our proposal. Due to the limited paper
size and the closeness of DBPR and BPR ranking qualities (see Section 7.2), we compare
here their learning times. We led a set of experiments with two publicly available datasets.

4.1. Datasets

Due to the lack of implicit feedback datasets, researchers usually rely to transforming
rating datasets [9, 5]. Thus we evaluate our algorithm using two different rating datasets:
MovieLens@ 1M and MovieLens@10M 2. As we want to solve an implicit feedback task,
we first take only the ratings with a value > 4 (the range of ratings is from 1 to 5), then we
generated user-item pairs by removing the rating scores. Thus we obtain implicit, positive
only feedback datasets. Table 1 shows the final characteristics of the datasets.

2. http://www.grouplens.org/node/73

Proceedings of CARI 2016 123

Table 1 — Characteristics of the datasets

[Dawset [U] [[[8[|

MovieLens@IM | 6,036 | 3,483 450,771
MovieLens@10M | 56,071 | 10,119 | 4,010,795

4.2. Setup

We implemented DBPR and BPR in C/C++ and used shared-memory processing. We

generated all strata by backtracking. Then to balance the amount of data in the pair-blocks,
we used a round-robin-based approach which permutes both users and items. Two indexes
allow us to find the final position of a user or an item.
Our evaluation consisted to run DBPR with increasing degree of parallelism, and com-
pares its computation time to the one of BPR 3. Of course, we included in the final process-
ing time of DBPR the one spent to generate strata and balance data between the blocks.
We ran our experiments on a linux computer (Intel/Xeon with 24 cores at 2.93 GHz, and
64 GB of memory).

4.3. Learning time vs Parallelism degree

On cach dataset, we launched one instance of BPR, and successively instances of
DBPR with increasing degrees of parallelization. To ensure considering the same number
of triplets per iteration for both BPR and DBPR, with compute the number of triplets per
both iteration and pair-blocks as follows N, = W]\;\Q’ where N represent the number of
triplets per iteration for BPR. With this consideration, we ensure that all our executions
do the same amount of calculation. For each dataset, we drew 10 x | S| triplets at each
learning iteration. The number of factors per user and item is fixed to 10 and the total
number of iteration to 200.

Figure 4 points out the contribution of DBPR on learning time relatively to the one of
BPR. The latter equals 494 and 6,053 seconds for respectively the learning time on Movie-
Lens@1M and MovieLens@10M. We can observe that the learning time decreases almost

Relative learning time
Relative learning time

1 2 4 6 8 10 1 2 4 6 8 10
Parallelism degree Parallelism degree

(a) MovieLens@1M (b) MovieLens@10M

Figure 4 — Relative learning time vs Parallelism degree

proportionally to the degree of parallelization thanks to the independence of pair-blocks
in each stratum.

3. One can consider that an execution of BPR corresponds to the one of DBPR without paralleliza-
tion

124 Proceedings of CARI 2016

5. Conclusion

DBPR is a new proposal to improve the learning time of BPR-liked models. In our
experimentation, we demonstrated its efficiency as it is able to nearly decrease the compu-
tation time proportionally to the degree of parallelization. Time reduction allows to learn
BPR models from very large datasets by adapting our proposal to distributed framework
like MapReduce.

Following the statement of the law of large numbers and the central limit theorem,
one can expect a better ranking precision by increasing the size of the dataset P while
ensuring moderated learning time with DBPR.

6. References

[1] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 11, pages 69-77,
New York, NY, USA, 2011. ACM.

[2] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining,
ICDM ’08, pages 263-272, Washington, DC, USA, 2008. IEEE Computer Society.

[3] Lukas Lerche and Dietmar Jannach. Using graded implicit feedback for bayesian personalized
ranking. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys ’14,
pages 353-356, New York, NY, USA, 2014. ACM.

[4] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin Scholz, and Qiang
Yang. One-class collaborative filtering. In Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, ICDM ’08, pages 502-511, Washington, DC, USA, 2008. IEEE
Computer Society.

[5] Weike Pan and Li Chen. Gbpr: Group preference based bayesian personalized ranking for
one-class collaborative filtering. In Francesca Rossi, editor, LJCAL IJCAI/AAAI, 2013.

[6] Shuang Qiu, Jian Cheng, Ting Yuan, Cong Leng, and Hanging Lu. Item group based pairwise
preference learning for personalized ranking. In Proceedings of the 37th International ACM
SIGIR Conference on Research &,; Development in Information Retrieval, SIGIR *14, pages
1219-1222, New York, NY, USA, 2014. ACM.

[7] Benjamin Recht and Christopher Recht. Parallel stochastic gradient algorithms for large-scale
matrix completion. Mathematical Programming Computation, 5(2):201-226, 2013.

[8] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for item recommen-
dation from implicit feedback. In Proceedings of the 7th ACM International Conference on Web
Search and Data Mining, WSDM ’14, pages 273-282, New York, NY, USA, 2014. ACM.

[9] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence, UAI 09, pages 452—461, Arlington, Virginia,
United States, 2009. AUAI Press.

[10] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel sgd for
matrix factorization in shared memory systems. In Proceedings of the 7th ACM Conference on
Recommender Systems, RecSys ’13, pages 249-256, New York, NY, USA, 2013. ACM.

Proceedings of CARI 2016 125

7. Annexes

7.1. Biographie

M. Gueye hold a PhD degree from Telecom ParisTech, a leading French engineering
school specialized in computer science, under the supervision of Pr Talel Abdessalem
(Telecom ParisTech) and Dr Hubert Naacke (University Pierre & Marie Curie, France).
His thesis’ subject was about designing scalable and accurate recommender systems.

M. Gueye is currently an Assistant Professor at University Cheikh Anta Diop (Séné-
gal). His research interests are in large scale data management and mining, recommender
systems and web information extraction.

7.2. performance of DBPR in terms of ranking

Due to the limited size of the paper, we report here the performance of DBPR in
terms of quality measures commonly employed in the recommendation field. For the
performance evaluation, we used the Precision, Recall, F1 and NDCG measures which
are references in this field.

Tables 2 and 3 show the ranking qualities of BPR and some instances of DBPR with
increasing parallelism degree (2, 4 and 8 degree).

In almost all the measures, we see that the ranking quality of DBPR is close enough
to the one of BPR. The slight lost of quality when the parallelism degree increases can
be related to the pair-blocks-based learning of DBPR. Indeed, each processor unit is con-
strained to sample triplets into its current pair-blocks. Although this ensures independant
processing, but we can not sample so much different triplets as BPR allows. We target to
face this drawback in our future work. Indeed with the decreasing of computation time
thanks to the distributed approach of DBPR, we can increase the number of triples to use
in each iteration in order to expect better ranking in recommendations.

Table 2 — top@5 comparison of DBPR and BPR on MovieLens@ 1M

| Algorithm | Recall Precision F1 NDCG |

BPR 0.1057 0.3997 0.1671 0.0782
DBPR-2 0.1032 0.39 0.1632 0.0765
DBPR-4 0.0997 0.3886 0.1586 0.0732
DBPR-8 0.0972 0.3865 0.1553 0.0718

Table 3 — top@10 comparison of DBPR and BPR on MovieLens@ 1M

| Algorithm | Recall Precision F1 NDCG |

BPR 0.1766 ~ 0.3573 0.2363 0.1095
DBPR-2 0.1743 0.3502 0.2327 0.1061
DBPR-4 0.1726 ~ 0.3513 0.2314 0.1023
DBPR-8 0.1688 0.3481 0.2273 0.099%4

