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RESUME. Les estimateurs de taux d’erreur binaire par méthode a noyau sont d'un intérét récent
pour la réduction du col(t des méthodes de Monte Carlo. Pour le moment, ils sont surtout appliqués
a des modulations binaires. Dans ce papier, un estimateur a noyau est congu pour des systémes
M-aires codés de Modulation d’Amplitude en Quadrature (MAQ). Les observations utilisées pour
I'estimation sont définies sous forme de bits a valeurs souples bornées. Un noyau d’Epanechnikov
est choisi et son parameétre de lissage obtenu sur la base du concept de bande passante canonique.
Des simulations sont réalisées pour des systemes MAQ-4 et MAQ-16 impliquant des canaux a bruit
additif blanc Gaussien ainsi qu’a évanouissements de Rayleigh. Les résultats obtenus montrent que
I'estimateur proposé produit des gains en codt significatifs qui croissent avec E, /Ng.

ABSTRACT. Kernel Bit Error Rate (BER) estimators are of recent interest for Monte Carlo sample
size reduction. Until now, they mainly addressed binary modulation systems. In this paper, a kernel-
based BER estimator is designed for coded M -ary Quadrature Amplitude Modulation (QAM) systems.
The observations from which estimations are made are defined in the form of bounded soft bits. An
Epanechnikov kernel function is selected and its smoothing parameter is derived based on the concept
of canonical bandwidth. Simulations are run for 4-QAM and 16-QAM systems, involving additive white
Gaussian noise and frequency-selective Rayleigh fading channels respectively. Simulation results
show that the proposed estimator yields significative sample savings that grow with £}, /Ng.

MOTS-CLES : Taux d’erreur binaire, Estimateur & noyau, Méthode Monte Carlo, Fonction de densité
de probabilité.
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1. Introduction

The Bit Error Rate (BER) is a measure of performance largely used in digital commu-
nications domain. Analytical BER estimation techniques have been studied [1], [2]. How-
ever, closed-form solutions are generally unavailable when considering complex digital
communication systems. More successful have been simulation-based techniques at the
core of which is the Monte Carlo (MC) method. The MC method is a universal technique
that supplies an empirical determination of the BER estimate and that is commonly used
as a reference for other methods. Its weak point is its high computational cost.

Since the 1970s, simulation-based techniques [3] were developed in order to reduce
the sample size that the MC method requires to achieve accurate estimation. Recently, new
BER estimation methods based on non-parametric probability density function (pdf) esti-
mation have shown to achieve good performance for the uncoded binary-input Gaussian
channel : namely Gaussian mixture models [4] and kernel estimators [S]. In [6], a kernel-
based soft BER estimator is applied to Code Division Multiple Access (CDMA) schemes,
for which efficient and reliable BER estimates have been reported. In [7], it is shown that
kernel-based BER estimations can perform well in a blind way. Using Maximum Likeli-
hood for the smoothing parameter optimisation, kernel method for BER estimation was
applied to binary coded transmission schemes involving Turbo and Low Density Parity
Check (LDPC) codes over CDMA systems [8].

To the best of our knowledge, BER estimation using kernel methods has been so far
only applied to CDMA systems over Additive White Gaussian Noise (AWGN) channels.
In this paper, we first address the issue of general M-ary modulations. Shifting from 2-
ary real constellations to M -ary complex modulations involves the estimation of complex
pdfs. As QAM systems are largely included in standards, we focus on this family of M-
ary modulations. Secondly, we address the issue of estimating the BER when transmitting
over frequency-selective fading channels. Hence, the distribution of the soft observations
loses its Gaussian nature and finding an ad-hoc smoothing parameter for the kernel is not
straightforward. In the remainder, we give a theoretical formulation of the Bit Error Prob-
ability (BEP) in Section 2 and present the principle of kernel-based estimation technique
in Section 3. We describe the proposed kernel-based BER estimator in Section 4 while
reporting simulation results in Section 5. In Section 6, we conclude the paper.

2. Theoretical formulation of the BEP

Let us consider a coded digital communication system that operates with Quadrature
Amplitude Modulation (QAM) schemes. A signal containing coded QAM waveforms of
alphabet {S1,So,...,Sn} is transmitted over a noisy channel. M is the constellation
size. At the receiver-end, we assume that the channel decoder delivers N independent
and identically distributed soft bits (X;)1<;j<x. Let X denote the univariate real random
variable that describes the soft bits (X)1<;<n and let f )(? ) (resp. f )((1 ) be the conditional
pdf of X such that the transmitted bit b; = 0 (resp. b; = 1). The BEP can be stated as :

pe = Pr[X>0,b =0]+Pr[X <0,b =1] (1)
= Pr[X >0|b =0]Pr[b; = 0]+ Pr[X <0|b; =1]Pr[b; =1] (2

+oo 0
= 71'0/ )(?)(m)dx—i—m f)((l)(x)dx, 3)
0
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where my and 7 are the a priori probabilities of bits values “0” and “1” respectively.

The BER is an estimate of the BEP. Based on the MC approach, it is estimated by
counting the errors that occured on the transmitted data. Based on the kernel technique,
the principle of its estimation is described in the following.

3. Kernel-based soft BER estimation

In kernel-based BER estimation, the marginal conditional pdfs f )((0 )(:c) and f )((1 )(ac)
are estimated as follows :

77,57’
A(b:) 1 1 (x—Xj>
x)=— —K , 4
Xe) = o ; Tl G “

where K is any even regular pdf with zero mean and unit variance called the kernel, n;,
is the cardinality of the subset of the soft observations (X), . J<N which are likely to be
decoded into a binary “0” bit value (resp. “1”) and h;, is a parameter called smoothing
parameter (or bandwidth) that depends on the soft observations (X;), . ; <o, Then, p, in

Eq. (3) can be estimated as

+oo 0
Pe = 770/ )(?)(x) dx + m / fg)(x) dz. 5)
0 —o00

The choice of the kernel K is related to the density function under estimation. When-
ever the observed samples are distributed over a large scale, distributions with an infinite
support (e.g., Gaussian distribution) are well suited. However, finite support distributions
such as Epanechnikov or Quartic distributions should be selected to model K when the
observed samples are bounded.

The design of the smoothing parameter h is a major issue since it significantly governs
the accuracy of the estimation. To the end, optimisation of i with respect to some given
constraints has been proposed. One of the most popular is the Asymptotic Mean Inte-
grated Squared Error (AMISE) criterion. When the AMISE criterion is used, the optimal
smoothing parameter is derived [9] as,

1/5
J K?(x)dz N-1/5. (6)
[ Fi(@)?de (f 22K () dz)” |

where f;; (z) is the second derivative of the pdf fx(x). Clearly, the constraint in Eq.
(6) is the prior knowledge of the target distribution fx, which is of course unknown and
searched for. In practice, some reference distribution can be used to replace fx, with
mean and variance matching those of data. In the literature, the Gaussian distribution is
a popular choice for fx. Many designs of h},,sg can be found including this recent one
given as follows [10] :

* p—
hAMISE -

e = (4/3)"° min (6, IQR/1.34) N~1/5, 7

where ¢ is the standard deviation of the data and IQR is their interquartile range.
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4. Proposed kernel-based BER estimator scheme

Let us consider a digital communication system that includes a channel codec (en-
coder/decoder). The coded BER is the BER that is determined at the output of the channel
decoder. A kernel-based soft coded BER estimator is proposed in this paper. Suited soft
bits have to be given at the entry of the estimator. We define the soft bits as follows :

X = Prlb; = 1]r] ~ Prfb; =0}, ®

where r is the received signal. Let us assume that the channel decoder requires soft in-
puts in the form of Log-Likelihood Ratio (LLR). Each M-ary QAM soft symbol at the
output of the channel carries k = loga(M) LLR bits (L;)1<;j<i that can be retrieved
by a symbol-to-bit soft demapping [11]. We also assume that the outputs of the channel
decoder are soft LLR bits. The jth LLR, L, is defined as

£ =6 (5 o1 ®

From Eq. (8), Eq. (9) and constraint Pr[b; = 1|r] + Pr[b; = 0|r] = 1, the soft bit X is
derived in terms of the channel decoder output L; as follows :

1—e
X; = To oL (10)
Using the soft bits (X;)1<;<n, the proposed kernel-based estimator can perform, pro-
vided a kernel function K and a suitable smoothing parameter h are selected.

As shown in Eq. (10), the soft bits (X ji)1<j<n are bounded between —1 and +1.
So, among the kernel function with bounded support, the Epanechnikov kernel function
K(z) =2 (1 —2%) I(Jz| < 1) is chosen. Then it can be checked that the kernel estima-
tor with bandwith h will be restricted to interval [—1 — h, 1 + h]. Since optimaly chosen A
remains much smaller than 1 for large samples, we can consider that numericaly the sup-
port constraint for the distribution of X is satisfied when using the Epanechnikov kernel.
Therefore, we need to find the corresponding smoothing parameter A, that approximates
well hiysg of Eq. (6). As h¢,, is a good approximation of ks of Eq. (6) in the con-
text of a Gaussian kernel, the idea is to derive hg,, from hg,, based on the concept of
canonical bandwidth [12]. The parameter g, is then expressed as

* 0 *
s = e o an

where, from [12] dgau =~ (1/4)/*° = 0.7764 and 65,, ~ 15'/5 = 1.7188 are the
canonical bandwidths of the Gaussian and Epanechnikov kernels.

At this stage, the expressions of the two marginal conditional pdfs f )({0 ) (z)and f )((1 ) (z)
can be derived from Eq. (4) and then, Eq. (5) can be rewritten as follows :

no

too 1 (m—X—) R L | z—X;
pe = T — —K J dx+7r/ — —K( J) dz,
P °/o no;hz‘; hg "o n§h hi

J
12)
where h{ (resp. h}), computed according to Eq. (11), is the selected optimal bandwidth

which will govern the estimation accuracy of f)(?)(:r) (resp. f)((l)(:r)) After transforma-



186 Proceedings of CARI 2016

tions that are detailed in Appendix, Eq. (12) leads to the expression of the coded BER
estimate as follows :

L moLo 1L 3my [ 2 a? 3my 2 33
Pe=— =t T QZ 4ng (3 e @;1 m \3T 3 )
1<j<no 1<) <,

(13)
where o; = —X;/h§, B; = —X;/hi, Lo (resp. L) is the cardinality of the subset of
()1 <j<ny (@SP. (Bj),<<,,) which are less than —1 (resp. greater than 1). Based on
Eq. (13), coded BER estimates can be evaluated using soft bits (X )1<;j<n-

5. Simulation results

The proposed estimator has been simulated on a single-carrier QAM transmission
scheme over the AWGN channel and also on a multi-carrier QAM transmission scheme
over a frequency-selective Rayleigh fading channel. A Gray-coded 4-QAM and 16-QAM
constellations were considered. The Rayleigh channel was ten taps long with a sample pe-
riod of 12.81s, an 8 H z maximum Doppler shift and average taps gains given in watts by
the vector [0.0616 0.4813 0.1511 0.0320 0.1323 0.0205 0.0079 0.0778 0.0166 0.0188].
To mitigate inter-symbol and inter-carrier interferences, a Cyclic Prefix (CP) Orthogonal
Frequency Division Multiplexing (OFDM) technique was implemented. The length of the
CP was set to 9 and the number of OFDM sub-carriers set to 128. A 128-point FFT (Fast
Fourier Transform) was performed. The Channel codec was a 4/7-rate LDPC code with
a Gallager-based parity check matrix built to be of rank 15. The number of iterations was
set to 10 (resp. 30) for the AWGN (resp. Rayleigh) channel. An Epanechnikov kernel
function and the smoothing parameter of Eq. (11) were selected.

We evaluate the performance in terms of absolute bias and Confidence Interval (CI).
The absolute bias is defined as | E[p.] — p. | where p, represents an estimate of the coded
BER. The true BER p, is computed in the form of a benchmark using MC simulations.
The CI has been calculated for a 95% confidence level. To validate the proposed estimator
over the AWGN channel, Figure 1 offers a visual way to evaluate the bias for 4-QAM and
16-QAM transmission schemes. We can see that the kernel-based coded BER estimates
data points are very close to the true BER (benchmark) from values greater than 10~*
down to 107°. Table 1 illustrates the bias and the CI using numerical data related to 4-
QAM system simulation. From the observed CIs and their corresponding kernel sample
sizes N, we derived (see [3]) the required sample sizes for MC simulations to yield equal
performance and noted sample savings up to a factor 16. As for the performance achieved
over the Rayleigh channel, the green curves with diamond marks in Figure 2 illustrate that
coded BER estimates are close to their corresponding benchmarks. Detailed information
about the bias, the CIs and the sample sizes is provided in 7able 2 as far as 16-QAM
transmission schemes are concerned. A thorough analysis of the observed numerical data
let us notice that all the data points on the green curves are associated to coded BER values
that fall into their corresponding CIs. The observed smallest CI is [0.89p,, 1.11p,.] and
the largest of all is [0.52p,, 1.48p.]. If we considered [0.50p., 1.50p.] as the largest CI
over which the estimator is declared not reliable and combining with the fact that all the
mean values of the BER estimates are inside their corresponding Cls, we can conclude, at
the light of the observed Cls, that the proposed estimator is reliable for BER values down
to the neighbourhood of 104,
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Figure 1. Performance of the proposed estimator over the AWGN channel

Regarding the efficiency, the two last Columns of Table 2 show that the proposed esti-
mator requires less samples than the MC method. The given kernel (V) and MC (V)
sample sizes are those required for the two methods to achieve (almost) equal bias and CI.
To illustrate this, let us consider the row of E},/Ny = 12 dB in Table 2. The proposed esti-
mator achieved an efficiency described by a sample size of 50 000 against 127 995 for the
MC estimator. In the same time, the proposed estimator achieved a CI of [0.81p, 1.19p,]
versus [0.80p., 1.20p,] for the MC estimator. The two estimators performed the estima-
tion with almost equal bias (0.0011 for the MC method against 0.0012 for the proposed
kernel method). Moreover, for E}, /Ny = 20 dB in Table 2, both the MC and the proposed
estimators performed an estimate with equal bias and achieved CIs are [0.62p., 1.38p,]
for the MC estimator against [0.67p, 1.33p,] for the proposed one. The corresponding
sample saving achieved by the proposed estimator is at least of a factor 5.

Behind this efficiency of the proposed estimator is also hidden its performance in
terms of the power consumption. The MC method and the proposed estimator yield almost
equal CPU time for equal sample sizes; e.g. : at £, /Ny = 20 dB and for a sample size of

Tableau 1. Numerical results of coded 4-QAM BER estimation over AWGN channel

Ey/No Benchmark Bias Cl Ny
00dB  1.1x 107" 0.03x10~" [0.94p., 1.06p.] 103
01dB 6.7x1072 0.22x 1072 [0.90p,, 1.10p.] 103
02dB  31x1072 0.22x 1072 [0.82p., 1.18p.] 103
03dB  12x1072 0.11x 1072 [0.93p., 1.07p.] 10%
04dB  3.0x107% 0.18x 1073 [0.81p., 1.19p.] 10%
05dB  4.7x107* 030 x 107*  [0.89p,, 1.11p.] 10°
06dB 4.9x107° 0.38x 107° [0.66p,, 1.34p.] 10°
07dB  44x107% 0.09x 10°% [0.54p., 1.46p.] 10°
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Figure 2. Performance of the proposed estimator over Rayleigh channel

100000, the CPU time engendered over the Rayleigh channel is 33.24 seconds for the MC
method against 35.27 seconds for the proposed estimator. However, when the sample size
increases it causes the CPU time to increase too. So, the sample saving due to the kernel
method is beneficial in terms of power consumption. As an illustration, the performance
achieved at I, /Ny = 24 dB (see Table 2) is at the cost of a CPU time of 7.27 minutes for
the proposed estimator while being by far greater than 4.35 hours for the MC method.

6. Conclusion

In this paper, we proposed a kernel-based coded bit error rate estimator involving
soft M-ary Quadrature Amplitude Modulation (QAM) symbols. An Epanechnikov kernel
function was selected. The corresponding smoothing parameter was determined based on
the concept of canonical bandwidth. Simulation results were reported for coded 4-QAM
and 16-QAM single carrier transmissions over the additive white Gaussian noise channels
and for coded multiple carrier modulations over a frequency-selective Rayleigh fading
channel. Through curves and numerical data, the proposed kernel-based estimator showed
to be, for equal reliability, more efficient than the Monte Carlo estimator. In future works,
we will be interested in the possible efficiency improvement that might be achieved if
different bandwidth selection strategies were implemented.
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Tableau 2. Numerical results of coded 16-QAM BER estimation over Rayleigh channel

E,/Ny  Benchmark Bias CI Ny, N

00dB 258 x 107! 0.13x 107! [0.89p., 1.11p,] 1.0 x 10® 3.0 x 103
04dB 150 x 107" 0.06 x 10~ [0.86p,, 1.14p.] 2.0 x 10* 1.9 x 10*
08dB 6.28x 1072 0.26 x 1072  [0.87p., 1.13p.] 5.0 x 10* 5.1 x 10%
12dB  231x1072 0.12x 1072 [0.81p,, 1.19p.] 5.0 x 10* 1.3 x 10°
16dB  7.00 x 1073 1.00 x 1072 [0.73p,, 1.27p.] 5.0 x 10* 1.0 x 10°
20dB  1.50 x 1073 0.08 x 1073 [0.67p., 1.33p.] 1.0 x 10° > 5.1 x 10°
24dB  3.42x107* 0.36 x 107* | ]

0.54p,, 1.46p.] 4.1 x 10> > 2.6 x 10°

7. Bibliographie

[1] S. BENEDETTO, E. BIGLIERI, R. DAFFARA, « Modeling and performance evaluation of non
linear satellite links-A volterra series approach », IEEE Journal on Selected Areas in Commu-
nications, vol. AES-15, 1979, pp. 494-507.

[2] K. YAo0, L. B. MILSTEIN, « The use of moment space bounds for evaluating the performance
of a non linear digital communication system », IEEE Transactions Communications, vol. 31,
1983, pp. 677-683.

[3] M. C. JERUCHIM « Techniques for estimating the bit error rate in the simulation of digital
communication systems », IEEE Journal on Selected Areas in Communications, vol. 2,n° 1,
1984, pp. 153-170.

[4] S. Saoupi, T. DERHAM, T. AIT-IDIR, P. COUPE « A Fast Soft Bit Error Rate
Estimation Method », EURASIP Journal Wireless Communications and Networking,
doi :10.1155/2010/372370, 2010.

[5] M. ROSENBLATT, « Remarks on some non-parametric estimates of a density function », The
Annals of Mathematical Statistics, vol. 27,n° 3, 1956, pp. 832-837.

[6] S. Saoupi, M. TROUDI, F. GHORBEL, « An Iterative Soft Bit Error Rate Estimation of
Any Digital Communication Systems Using a Nonparametric Probability Density Function »,
EURASIP Journal Wireless Commun. and Networking, doi :10.1155/2009/512192, 2009.

[7]1 S. Saoubi, T. AIT-IDIR, Y. MOCHIDA, « A Novel Non-Parametric Iterative Soft Bit Error
Rate Estimation Technique for Digital Communications Systems », In : IEEE International
Conference on Communications, 2011, pp. 1-6.

[8] J. DONG, T. AIT-IDIR, S. SAOUDI, « Unsupervised bit error rate estimation using Maximum
Likelihood Kernel methods », In : IEEE Vehicular Technology Conference, 2012, pp. 1-5.
[9] M. C. JONES, J. S. MARRON, S. J. SHEATER, « A brief survey of bandwidth selection for

density estimation », Journal of the American Statistical Association, vol. 91, n°® 433, 1996,
pp. 401-407.

[10] A. Z. ZAMBOM, R. DIAS, « A review of Kernel density estimation with applications to
econometrics », International Econometric Review, vol. 5,1n° 1, 2013, pp. 20-42.

[11] Q. WANG, Q. XIE, Z. WANG, S. CHEN, L. HANZO0, « A Universal Low-Complexity Symbol-
to-Bit Soft Demapper », IEEE Transactions on Vehicular Technology, vol. 63,n° 1, 2014, pp.
119-130.

[12] J.S. MARRON, D. NOLAN, « Canonical kernels for density estimation », Statistics & Proba-
bility Letters, vol. 7, 1988, pp. 195-199.



190 Proceedings of CARI 2016

8. Appendix
The BER estimate as given in Eq. (12) is

= —_— i L
Pe = To o h* hO ™ Tll h* hi X,

(A.1)
where n (resp. n1) is the cardinality of the subset of the soft observations among (X)1<;<n
which are likely to be decoded into a binary “0” bit value (resp. “1”) and h{ (resp. h7)
is the selected optimal smoothing parameter which will govern the accuracy of the esti-

mation of £’ () (resp. £ (). More explicitly, as K () = 3 (1 — 22) I(|z| < 1), we

have
2
AT +o0 3 X —-X;
pe—#&fg Z?ilm[l—(fha )]I(:’:hS <1>dx
(A.2)
2
"‘mf_ ]14h*|:1_(%):|1(%‘§1)d35
Then, using one of the properties of the integral, we get
A 41 no +oo 3 1 z—X, 2 I d
Pe = j=tJo @z |+ T\ Th; e | S x
(A.3)
2
s r—X; z—X
AR 4h1 [1_< h’;]> ]I( | S 1) dx.
Now, let us set the following changes of variables :
_ =X
U=z
r—X;
V=g
We obtain
37
Pe = ﬁézyol —X]/h (1—w?)I(Jul <1) du
(A.4)
n =X/t
S M () I (el < 1) do,
and then,
@2/ (1_u)du+3ﬂ§j/ (1—?) do
4no = Jia,, +ocn [-1.1] Ay = Jicoo, g0 [-1,1) ’
(A.5)

where o; = —X;/h{ and §; = —X; /h]. Depending on the values of «; (resp. [3;), three
cases are possible among which one leads to zero ; hence we get,
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1 1
ﬁe = i:‘;; {Zﬂj<—1, [t— %:I_l +E|OZJ|§].7 |:t_ %:I }

1<j<no 1<j<ng j
(A.6)
311 5185
3 £ il
el DONES [t - ?]_ + 215151, [t - ?]_
1<j<n 1 1<j<n; 1
Finally, the BER estimate expression is as follows :
~ 043
e o S (1o )
1<j<no
(A7)

. 5
+in {Zlﬂjlﬂ (3+8- T)} )

1<j<n

where Ly (resp. L1) is the cardinality of the subset of (av;), ;. (resp. (8j),;<,,)
which are less than —1 (resp. greater than 1). o o
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