262 Proceedings of CARI 2016

Fast Polygons Fusion for Multi-Views Moving
Object Detection from Overlapping Cameras

Mikaél A. Mousse!2, Cina Motamed' and Eugene C. Ezin?

!Laboratoire d’Informatique Signal et Image de la Céte d’Opale
Université du Littoral Cote d’Opale, France

E-mail : {mousse, motamed} @lisic.univ-littoral.fr

2Unité de Recherche en Informatique et Sciences Appliquées
Institut de Mathématiques et de Sciences Physiques, Bénin
E-mail : eugene.ezin @imsp-uac.org

RESUME. Dans cet article, nous proposons un algorithme de fusion rapide de polygones pour la
détection d’objets mobiles par le biais dans un réseau de caméras. Apres la détection des pixels de
premier plan de chaque camera, nous approximons les contours détectés par des polygones. Ces
polygones sont projetées dans le plan de référence. Aprés cela nous proposons une approche de
fusion efficiente dans le but d’obtenir une détection multi caméras. Les Différents résultats sur un jeu
de données publique sont présentés et analysés. La détection des objets mobiles a travers la vue de
chaque caméra est obtenue en utilisant un algorithme basé sur le codebook.

ABSTRACT. In this paper, we propose a fast polygons fusion algorithm to address the problem of mov-
ing object detection from overlapping cameras. Once the foreground pixels are detected in each view,
we approximate their contours with polygons and project them into the reference plane. After this, we
propose an efficient fusion approach to fuse polygons in order to obtain a multi-views foreground area.
The different results on open video dataset are presented and analyzed. Each foreground information
is obtained by using a codebook based moving object detection algorithm.

MOTS-CLES : Détection d’objet, Codebook, Caméras avec vues chevauchant, Fusion d’informations

KEYWORDS : Motion detection, Codebook, Overlapping camera, Information fusion

Proceedings of CARI 2016 263

1. Introduction

In computer vision community, the use of multi-camera takes a lot of scope. Indeed,
motivations are multiple and concern various domains as the monitoring and surveillance
of significant protected sites, the control and estimation of flows (car parks, airports, ports,
and motorways). Because of the fast evolution in the fields of data processing, commu-
nications and instrumentation, such applications become possible. These kind of systems
require more cameras to cover overall field-of-view. They reduce the effects of objects
dynamic occlusion and improve the accuracy of estimation of foreground zone.

According to Xu et al., existing multi-camera surveillance systems may be classified
into three categories [6]. The system in the first category fuses low-level information. In
this category, multi camera surveillance systems detect and/or track in a single camera
view. They switch to another camera when the systems predict that the current camera
will not have a good view. In the second category, system extracts features and/or even
tracks targets in each individual camera. After this, we integrate all features and tracks in
order to obtain the global estimates.These systems are of intermediate-level information
fusion. The system in the third category fuses high-level information. In these systems, in-
dividual cameras don’t extract features but provide foreground bitmap information to the
fusion center. Detection and/or tracking are performed by a fusion center [1, 2, 3, 6, 7].
This paper will focus on the approaches in the third category. In this category some algo-
rithms have been proposed. Authors in [2] proposed to use a planar homographic occu-
pancy constraint to combine foreground likelihood images from different views in order
to resolve occlusions and to determine regions on the ground plane that are occupied by
people. In [3], authors extended the ground plane to a set of planes parallel to it, but at
some heights off the ground plane to reduce false positives and missed detections. The
foreground intensity bitmaps from each individual camera are warped to the reference
image by authors in [1] and the set of scene planes are at the height of people heads.
The head tops are detected by applying intensity correlation to aligned frames from the
different cameras. This work is able to handle highly crowded scenes. Yang et al. detect
objects by finding visual hulls of the binary foreground images from multiple cameras [7].
These methods fully utilize the visual cues from multiple cameras and are robust in co-
ping with occlusion. However the pixel-wise homographic transformation at image level
slows down the processing speed. In order to overcome this drawback, Xu et al. proposed
an object detection approach via homography mapping of foreground polygons from mul-
tiple camera [6]. They approximate the contour of each foreground region with a polygon
and only transmit and project the vertices of the polygons. The foreground regions are
detected by using Gaussian mixture model. After the projection of the polygons vertices,
they rebuilt each foreground map in the reference image by considering as foreground
pixels all pixels lying inside a polygon. The multi-view object detection is obtained by
considering the pixels which have been detected to be a foreground pixels in n different
polygons (n is the number of cameras). This method provides good results [6]. In [5],
authors also propose an algorithm based on polygons fusion for moving object extraction.

In this work, we propose a new strategy based on polygons which reduces the com-
plexity of polygons fusion. Indeed a major challenge in computer vision is to get a real
time system. Then it is important to reduce the complexity of each part of a computer
vision system. This paper consists of four sections. The second section presents the po-

264 Proceedings of CARI 2016

lygons fusion approach. The third section presents experimental results. Conclusion and
future works are presented in section four.

2. Polygons Fusion Approach

In this section, we present our fusion approach for moving object detection in a multi
camera system. The goal of our algorithm is to extract the relevant vertices of the poly-
gons associated with the various objects in each view.

Let us consider a scene observed by n (n > 2) cameras with overlapping views.
The multi-view moving object detection in the ground plane is the intersection of the
single views foreground polygons projection. Then using our approach, we automati-
cally detect the vertices of the polygons resulting from intersections. In our approach,
the multi-view foreground map is represented by a codebook D = {d;,ds,..,dr} and
each codewords d;, ¢ = 1, ..., L represents a polygons resulting from intersection. Each
codewords consists of two vectors. The first vector index; contains the identifiers of the
polygons which form the intersection whereas the second content; contains the vertices
of the polygon resulting from intersection. In this part, we call vector a sequence contai-
ner representing arrays that can change in size.

Firstly, we consider two camera views and we project the vertices of their polygons in
the ground plane by using the principles of the homography. So if Vi = (v11,v21, ..., Vg1)
is original polygon in the single view plan, the projected polygons becomes V; = (v}, v,
., U},y) with v}, V%, ..., v}, which are respectively the projection of vi1, va1, ..., Uk1.
Among the two views, we select one view and we seek its projected points which belong
to a projected polygon from the view of the second camera. When we find a point which
verify this condition, we compare it to the current codebook to determine which code-
word d,,, (if any) it matches (m is the matching codeword’s index). To determine which
codeword will be the best match, we create a vector from different polygons identifiers
(belonging polygon identifier, origin polygon identifier) and compare it to the first vector
of each codewords. Two vectors will be considered as equivalent if all the elements in one
of the vector is necessarily in the second. If there is no match, we create a new codeword
dy, by setting indexy, to the vector issues from different polygons identifiers (belonging
polygon identifier, origin polygon identifier) and creating content in which we insert
the point. This part is resume in Algorithm 1. In this algorithm the two views Vj, V5 are
considered and we select the view V5 in order to seek its projected points which belong
to a projected polygon from the view of the second camera.

After that in each codeword d;, we have index; which contains the information about
polygons which form the intersection and content; which contains one point of the inter-
section. From this point we rebuild the intersection. For that we update the codeword d;.
We rewrite the projected polygon to which the point belongs by taking this vertex as the
first point of the polygon. For example, if V; = (v}, V4, ..., v},) represents the projected
polygon and vj; is the point then the rewriting gives Vi = (41, V)1, ..., Uk, Vi1, V51). By
using this polygon, we check from the first segment if in the ground plane a segment has

1. inCod(indexn, (idy,id;)) returns true if index, contains only id;, and id;.

Proceedings of CARI 2016 265

Algorithm 1: Codebook initialization

1 L + 0 (+ means assignment), D < () (empty set)

2 for each projected polygons id; of the view V5 do

3 for each each vertex v;_;q, of the polygon id; do

4 if v;_;q, is inside the projected polygon idy, of the view V; then

5 Find the codeword d,,, in D = {d,,|1 < n < L} matching to v; 4,
based on condition (a)

6 i (a) inCod ! (index,,, (idy, id;)) = true

7 if V = 0 or there is no match then

8 L+~ L+1

9 create codeword d, by setting parameter index , < (id,id;) and

contentr, < (vj_ia;)

an intersection with any segment of the second polygon of the codeword. If we don’t find
an intersection then we update codeword by adding at the end of the vector content; the
point at the second end of said segment and the initial polygon is considered as default
polygon during this part of the process. But if we find an intersection, we add two points
at the end of the vector content; : the first point is the intersection and the second is the
point of the segment from the second polygon which belongs to the first polygon of code-
word. In this case, the second polygon becomes default polygon. We repeat the search for
intersection between segments from two different polygons by using the default polygon
segment that comes from the last point which is inserted into content; until obtaining the
first point of the codeword. We take care to avoid to include this point again. After rea-
lizing these instructions on each codeword, our codebook contains information about the
polygons that form intersections using the two chosen views and the vertices of polygons
representing these intersections. This part is resume in Algorithm 2.

For each of the remaining cameras (if any remain), we rebuild the codebook. In order
to perform it, we consider the contents of the vector content of each codeword of the
immediately previous codebook as the vertices of a polygon and the concatenation of the
contents of the vector index of the codeword as the identifier of this polygon. All poly-
gons from this codebook are considered as part of an imaginary camera view. And we use
the process for codebook building for two different views (process which is explained in
previous algorithms (Algorithm 2 and Algorithm 3)) to build the new codebook by using
our imaginary camera view and the new input camera view.

Using this method we obtain automatically the vertices of the polygons resulting from
intersection. The multi view moving objects detection are then obtained by set as fore-
ground the pixels which are inside these polygons. The ray casting algorithm proposed by
Sutherland et al. [8] has been used in order to resolve point-in-polygon problem.

1. default segment is the segment which is obtained by considering in default_polygon, default_point
and the vertex that follows its.

266 Proceedings of CARI 2016

Algorithm 2: Extraction of intersection vertices

1 for each codeword d,, (with index,, = (idy,id;) and content,, = (vj_iq,)) of

codebook D do
2 Rewrite the projected polygon id; by taking v; ;4, as the first point of the
polygon.
default_point <— v;_;q,, default_polygon_id <— id;.
repeat
5 if the default segment®has an intersection with an other segment from a
second polygon forming c; then
6 default_polygon_id + default_polygon_id (identifier of the second
polygon which forming c;).
7 intersect_point <— intersection of the two segments.
8 default_point <— point of the segment from the default_polygon_id
which belongs to de fault_polygon_id.
9 if intersect_point # v; ;q, then
10 |_ update d,, by inserting intersect_point at the end of content,,.
11 if default_point # v; _;q, and default_point # intersect then
12 |_ update d,, by inserting default_point at the end of content,,.
13 else
14 default_point < point at the second end of said segment.
15 if default_point # v;_;4, then
16 |_ update d,, by inserting default_point at the end of content,,.
17 until default_point = v;_;q,

3. Experimental Results and Performance Evaluation

In this section, we present the performance of the proposed approach. Firstly we present
the experimental environment and results. After that we present and analyze the perfor-
mance of our system.

3.1. Experimental Results

For the validation of our algorithm, we tested it on video sequence that contains si-
gnificant lighting variation, dynamic occlusion and scene activity. Both qualitative and
quantitative evaluations have been carried out by using the PETS 2001 dataset®. We se-
lected sequence “Dataset 1” which are also used in other researches works. The size of
each frame is (768 x 576). The experiment environment is Intel® Core i7 CPU L 640 @
2.13GH z x 4 processor with 4GB memory and the programming language is C++.

During our experiment, we use foreground pixels detection algorithm presented in
Mousse et al. [4] for each single view foreground pixels extraction The foreground po-
lygons is obtained by finding the convex hull of the foreground pixels. Each region can
be approximated by a polygon. The polygon is obtained by finding the convex hull of all
contours detected in threshold image. The convex hull or convex envelope of a set X of
points in the Euclidean plane or Euclidean space is the smallest convex set that contains
X. For instance, when X is a bounded subset of the plane, the convex hull may be vi-

3. Available online at http://www.cvg.reading.ac.uk/PETS2001/pets2001-dataset.html

Proceedings of CARI 2016 267

sualized as the shape enclosed by a rubber band stretched around X. Some segmentation
results are presented in Figure 1.

3.2. Performance Evaluation and Discussion

Xu et al. demonstrated the efficiency of the use of single views polygons and of their
intersections in a ground plane for multi-view objects detection [6]. Our experiment re-
sults also confirm that the polygon projection results are very close to those from the
bitmap projection. Due to this, we only evaluate the performance of our system by using
the processing time as metric. Xu et al. proved that their algorithm faster than the existing
algorithms [6]. So the discussion about the processing time of our proposed algorithm is
done by comparing its with the processing time of Xu et al.’s algorithm. Then, the overall

LS
L3
L
[
[]
[
[
L
-
L
E
W
I
W

Figure 1 : The first two rows show each camera views. In these rows, the first column
presents the original frame, the second column shows the foreground maps in single view
and the third column presents a foreground approximation with polygons The third row
shows the segmentation result using a multi-view informations.

268 Proceedings of CARI 2016

Tableau 1 : Global performance evaluation.

Score Xu et al Algorithm [6] | Proposed algorithm

Processing times (f/s) 65.82 73.97
execution time of the two algorithms. It is expressed in frames per second. Regarding the
comparison of overall performance, the obtained values are reported in Table 1. Accor-
ding to these values we can conclude that our proposed algorithm is faster than algorithm
suggested by Xu et al. The difference between the two execution times will increase when
the number of cameras will increase and/or the number of objects observed by several ca-
meras will become much larger. In fact with more cameras and/or more objects we will
obtain more polygons. The complexity of the fusion process strongly depends on the
number of cameras and/or the number of foreground objects.

4. Conclusion

In this work, we have proposed a fast algorithm for object detection by using overlapping
cameras. In each camera, we use an improvement of codebook based algorithm to get
foreground pixels. The single moving object detection algorithm integrates superpixels
segmentation in original codebook and extends its on pixel level. In order to obtain the
multi-view moving object detection, we propose a fusion approach which enables to de-
termine quickly the polygons resulting from intersection of single views polygons. The
experiment results have shown that the use of our fusion method reduces the computatio-
nal complexity of multi-view moving object detection.

5. Bibliographie

Eshel, R., Moses, Y. : Homography based multiple camera detection and tracking of people in a
dense crowd. 18th IEEE International Conference on Computer Vision and Pattern Recognition,
2008.

Khan, S.M., Shah, M. : A multi-view approach to tracking people in crowded scenes using a
planar homography constraint. 9th European Conference on Computer Vision, 2006.

Khan, S.M., Shah, M. : Tracking multiple occluding people by localizing on multiple scene planes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, 2009.

Mousse, M.A. , Ezin, E.C. , Motamed, C. : Foreground-background segmentation based on code-
book and edge detector. 10th International Conference on Signal Image Technology & Internet
Based Systems, 2014.

Mousse, M.A., Motamed, C., Ezin, E.C. : Fast moving object detection from overlapping cameras.
International Conference on Informatics in Control, Automation and Robotics, 2015.

Xu, M., Ren, J., Chen, D., Smith, J., Wang, G. : Real-time detection via homography mapping
of foreground polygons from multiple cameras. 18th IEEE International Conference on Image
Processing, 2011.

Yang, D.B., Gonzalez-Banos, H.H., Guibas, L.J. : Counting people in crowds with a real-time
network of simple image sensors. 9th IEEE International Conference on Computer Vision,
2003.

Sutherland, LE., Sproull, R.F., Schumacker, R. A. : A characterization of ten hidden surface
algorithms. ACM Computing Surveys (CSUR), 1974.

