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ABSTRACT. In this work, we study a flocculation model with a single resource and a single species
which is present in two forms: isolated bacteria and attached bacteria. With monotonic growth rates
and distinct removal rates, we show that this model presents a rich behavior with multiplicity of positive
equilibria and bi-stability. Whereas, this bi-stability could occur in the classical chemostat model only
with a non-monotonic growth rate.

RESUME. Dans ce travail, nous étudions un modéle de floculation avec une seule ressource et une
seule espéce qui se présente sous deux formes: des bactéries isolées et en flocs. Avec des taux de
croissance monotones et des taux de prélévement distincts, nous montrons que ce modéle présente
un comportement trés riche avec multiplicité des équilibres positifs et bi-stabilité. Cependant, dans le
modele classique du chémostat, cette bi-stabilité ne peut se produire qu'avec un taux de croissance
non monotone.
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1. Introduction

Flocculation is a process wherein microorganisms isolated or planktonic bacteria clus-
ter together to form a flocs and reversibly this flocs can split and liberate isolated bacteria
[10]. The attachment of planktonic bacteria could be also on a wall as biofilms [1]. This
flocculation mechanism can explain the coexistence between species when the most com-
petitive species inhibits its growth by the formation of flocs [3, 6]. Indeed, the flocs
consume less substrate than isolated bacteria since they have less access to the substrate,
given that this access to the substrate is proportional to the outside surface of the floc.

In order to understand and predict these flocculation phenomena, several extensions
of the well-known chemostat model [9] have been proposed and studied in the literature
by considering two compartments of isolated and attached biomass for each species [3].
For instance, Pilyugin and Waltman [8] have treated a model of wall growth where the at-
tachment and detachment rates are constant, and the population on the wall does not wash
out of the chemostat. The Freter model [5] describes a microbial population constituted
of planktonic cells in the fluid and adherent cells on the surface. Their model was studied
by Jones et al. [7], assuming that the planktonic bacteria are attracted to the wall at a rate
proportional to planktonic cell density and the fraction of unoccupied colonization sites
on the wall. More recently, the competition model of two species for a single substrate
has been studied by Haegeman and Rapaport [6], assuming that only the most competitive
species inhibits its growth by the formation of flocs. The study of [6] has been extended
by [2] and [4].

In this paper, we study the model of flocculation considered in [3], where the isolated
bacteria can stick with isolated bacteria or flocs to form new flocs. We do not assume
as in [3] that attachment and detachment dynamics are fast compared to the growth of
bacteria. The paper is organized as follows. In Section 2, we present the model of floc-
culation proposed in [3]. In Section 3, we study the existence and the local stability of
the equilibria of system (1) for non-negative attachment and detachment rates. In Section
4, numerical simulations are presented with realistic growth functions (of Monod type)
and the conclusion is drawn in the last Section 5. Most of the proofs are reported in the
Appendix A.

2. Mathematical model
In this paper, we consider the model of flocculation proposed in [3]
S = D(Sin — ) — pu(S)u — p1u(S)v

o [:LL’LL(S) - Du]u - (L(’LL + v)u +bv (1)
] [t (S) — Dylv + a(u + v)u — b

where S(t) denotes the concentration of the substrate at time ¢; u(t) and v(t) denote,
respectively, the concentration of planktonic and attached bacteria at time #; p.,,(S) and
1, (S) represent, respectively, the per-capita growth rates of planktonic and attached bac-
teria; S;,, and D denote, respectively, the concentration of the substrate in the feed device
and the dilution rate of the chemostat; D,, and D, represent, respectively, the removal
rates of planktonic and attached bacteria such that D, < D, < D.

We assume that the planktonic bacteria can stick with the isolated bacteria or the flocs
to form a new flocs, with rate a(u + v), where a is a non-negative constant, and that
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the flocs can split and liberate an isolated bacteria, with rate b, where b is a non-negative
constant. We add the following assumptions on the growth rates:

H1: The functions p,(-) and () are increasing for all S > 0 and satisfy p,,(0) =
110 (0) = 0.

Since the bacteria in flocs have less access to the substrate, given that this access to the

substrate is proportional to the outside surface of the floc, we assume that the bacteria in

flocs consume less substrate than isolated bacteria:

H2: 1,(S) > p1,,(S) forall S > 0.
Let ¢,,(S) and ¢, (.9) be the functions defined by

0u(S) = pu(S) =Dy and @, (S) = p1y(S) — D,

When equations /i, (S) = Dy, p,(S) = D, and ¢,(S) = b have solutions, they are
unique and we define the usual break-even concentrations

M= p; (DY), Ao =p (D) and Ny = o, (D).
Otherwise, we put \,, = +0oc or A\, = +00 or A\, = +00. We have the following result:

Proposition 2.1 For any non-negative initial condition, the solutions of system (1) remain
non-negative and bounded for all t > 0. The set

f D
0= {(S,u,v) ERY:S+u+v< D—Sm}

is positively invariant and is a global attractor for (1).

3. Analysis of the model

3.1. Existence of equilibria

In the following, we propose to study the existence of equilibria of (1). We use the
following definitions

I 1 Aus Aol it Ay < Ay
] Pesmin(g, AL)[ i Ay < A

~ D(Sin — 8)pu(S) _ D(Sin — S)eu(S)
V)= 58 = Dogu® ™ V) = Du(8) = Dugu(5)

— (pu(S)(SOv(S) — b)[DuSOU(S) — Dv‘pu(s)] )

H(S 2
5 W (S) — 2u (). (5)
Lemma 3.1 The system (1), with a > 0 and b > 0, admits the following equilibria:
— The washout, Ey = (S, 0,0), which always exists.
— A positive equilibrium, E* = (5*, u*,v*) for each S* solution of the equation
D(Sin — 5) = H(S), 3)

u* = U(S*) and v* = V(5*), which exists if and only if S* € I.
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The case a = b = 0 is simply the classical model of competition of two microbial
species for which the competitive exclusion principle takes place [9].In this case, the
system (1) has an equilibrium of extinction of v, £, = (A, u*,0), which exists if and
only if A, < S;;, and an equilibrium of extinction of u, E,, = (A, 0,v*), which exists if
and only if A, < S;;, with

D D

' =U(My) = —=—(Sin— ) and v* =V(\) = —(Sin — \y).

DU D7J
In the following, we study the existence of positive equilibria of (1). Each solution of
the equation (3) belonging to the interval I gives rise to a positive equilibrium of system.

Note that , o F oG
H/(S) — :uu((pv - )(pv —’2—/“;1)90" (4)
a(po — pu)?¥;
where
F = [Du¢? —2D,oup, + Dugl] > 0 5)
G = [bD“r(P’(Q) + (Dv - Du)@u@% + bDv((Pi - 2SDuSDU)]

In the case A\, < A, the sign of H'(.S) can be positive or negative for S € I (see Fig.
1). In the case A\, < A, one has H'(S) < 0 on I =]\,, min(\y, A,)[. Therefore, the
function H (-) is decreasing on I, but equation (3) can have many solutions (see Figs. 2

and 3).
Mo (S>
Dy, .
D, Ho ('5)
Lu(S)
4P1)(S)
S

Au Sin Ao A Ao Sin

Figure 1. The case A\, < min(\,, Sin): (a) Existence of unique positive equilibrium. (b)
Existence of three positive equilibria.

Therefore, the equation (3) may have several solutions whose number is generically
odd in the case A\, < A, or A, < Ay < S;p, (see Figs. 1 and 3 (b-c)) and even in the case
Av < Sin < Ay (see Figs. 2 and 3 (a)). In all figures, we choose the color red to represent
the locally exponentially stable equilibria and blue to represent the unstable equilibria.
We will show the asymptotic behavior of the equilibria in section 3.2.

In the case A\, < A, the function H(-) is defined and positive on the interval I =
J A, Ay since ¢, (S) > 0 and ¢, (S) < 0 for all S €]\, A,[. Moreover, it vanishes at \,,
and tends to infinity as S tends to A,. Hence, we have the following result:

Proposition 3.1 If )\, < min(\,, S;y), then there exists at least one positive equilibrium.
Generically, there is an odd number of positive equilibria. If S;;, < Ay < Ay, then there
is no positive equilibrium.

In the second case A\, < A, the function H(-) is defined and positive on the interval
I =]\, min(A,, Ap)[ since ¢, (S) < 0and 0 < ¢, (S) < bforall S €]\, min(Ay, \p)|[.
Moreover, it vanishes for S = min(\,, \y) and tends to infinity as S tends to \,. Hence,
we have the following result:
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Proposition 3.2 If A\, < min(\,, \y) < Sin, then there exists at least one positive equi-
librium. Generically, one has an odd number of positive equilibria. If Sy, < min(Aq, Ap),
then the system has generically no positive equilibrium or an even number of positive

equilibria.

u(S

Du () ) H(S)
o (S)
D’; o ()
/_’/;((S)
L s

Av Au Ab
s

Ao Eo Au

Figure 2. The case A\, < \. < . Existence of two positive equilibria and bistability for
Sin < min(Ay, Ap).

(a)

DS,

1 Lo S .
Ao Sin Au Ao Au  Sin Av Au Sin

Figure 3. The case S;,, < min(\,, \y): There is no positive equilibria (a). The case
Sin > min(Ay, \p): Existence of one (b) or three (c) positive equilibria.

Proposition 3.3 Let E* = (S*,u*,v*) and E** = (S**,u**,v**) be two positive equi-
libria of (1) such that S* < S**.

1) If Ay < Ay, then u* > u™* and v* < v**, this means that the equilibrium E*
promotes isolated biomass u and E** promotes biomass in flocs v.

2)If Ay < Ay, then u* > w** and v* > v**, this means that the equilibrium E*
promotes simultaneously two biomass v and v.

Proposition 3.4 The system (1) with a = 0, b > 0, admits at most three equilibria:
— The washout, Eg = (Sin,0,0), which always exists.
— The equilibrium of extinction of v, E,, = (A, u*,0) with u* = U(\,), which exists
if and only if \,, < Sin.
— The positive equilibrium, E* = (S* u*,v*) with S* = X\, u* = U(\) and v* =
V (M), which exists if and only if A\, < Xy < Ay and Ny < Sip.
Proposition 3.5 The system (1), with a > 0 and b = 0, admits the following equilibria:
— The washout, Eq = (Sin,0,0), which always exists.

— The equilibrium of extinction of u, E, = (\y,0,0*) with v* = V(\,), which exists
if and only if A, < Sin.
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— The positive equilibrium E* = (S* u*,v*), with S* solution of the equation
D(Siy, — S) = H(S), v* = U(S*) and v* = V(5*) which exists if and only if
Ay < S* < Ay and S* < S;,,.

3.2. Stability of equilibria

We study in the following the local stability of the washout equilibrium of (1).
Proposition 3.6 E is locally exponentially stable if and only if S, < Ay and Sip, < Ap.
In the following, we study the local asymptotic behavior of the positive equilibria of (1).

Proposition 3.7 Let E* = (S*,u*, v*) be a positive equilibrium with a > 0 and b > 0.
1) The case N, < \,: E* is locally exponentially stable if H'(S*) > —D and is
unstable if H'(S*) < —D.
2) The case A, < \,: E* is locally exponentially stable if H'(S*) < —D and is
unstable if H'(S*) > —D.

Table 1 summarizes the previous results:

Equilibria Existence condition Stability condition

Ey Always exists Sin < min(Ay, Ap)

Case A\, < A\,: H'(S*) > —-D

E (3) has solution S* € I Case Ay > Ay: H'(S*) < —D

Table 1. Existence and local stability of equilibria in system (1).

The proofs of the following results are given in [2].
Proposition 3.8 In the case a = 0 and b > 0:
— E, is locally exponentially stable if and only if A, < Ap.
— Whenever E* exists, it is locally exponentially stable.
Similarly to proofs of Props. 3.7 and 3.8 (see [2]), we obtain the following results:
Proposition 3.9 In the case a > 0 and b = 0:
— E, is locally exponentially stable if and only if S;, > Ay, + %H (Av)-

— The positive equilibrium E* = (S*,u*,v*) is locally exponentially stable if
H'(S*) > —D and is unstable if H'(S*) < —D.

4. Simulations

In the case where the growth rates are Monod-type, the equation D(S;,, —S) = H(S)
is equivalent to a polynomial equation of fifth degree. Therefore, there is at most five
solutions of this equation. The positive equilibria correspond to solutions which are in
the interval /. We succeeded in finding parameters sets with 3 solutions at most in this
interval. The following Monod-type growth rates are considered where all parameter
values used are given in Table 2.

’uu(s) _ mlS mgS

d pu,(S) = .
K, +S and 1y (S) Ko+ S
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Fig. 4 illustrates the case \, < A, < S;,, with three positive equilibria
E* ~ (3.06,12.11,157.46), E** ~ (5.17,8.53,524.30), E*** ~ (8.81,2.64,1086.32).

The numerical simulations show the bi-stability with two basins of attraction, one toward
FE* and the other toward E*** which are stable nodes. These two basins are separated by
the stable manifold of a saddle point E**. As it was proved in Prop. 3.3, u is promoted at
E* and v is promoted at E***.

] E5F

200 \L*
o
DMMO
FEy 4 PRI

¢ 8
0
u 2 1 S

A » Sin
Figure 4. The case A\, < A\, < Sin: Three positive equilibria and bi-stability.
Fig. 5 illustrates the case S;,, > A, > A, with three positive equilibria
E* ~ (3.31,2.23,27.08), E** ~ (3.98,1.67,4.12), E*** ~ (4.39,0.63,0.24).

The numerical simulations show the bi-stability of £* and E*** which are stable nodes.
The two basins of attraction are separated by the stable manifold of a saddle point E**.
As it was proved in Prop. 3.3, u and v are both promoted at £*.

60

40

Zt 3, 4 4.5
Ao Au Sin

Figure 5. The case \, < A\, < Sin: Existence of three positive equilibria and bi-stability.

5. Conclusion

In this work, we have considered a model of the chemostat with a single growth-
limiting resource and one species that is present in two forms: isolated and aggregated
bacteria. We have assumed that the growth rates are increasing and the dilution rates are
distinct. Without assuming that attachment and detachment dynamics are faster than the
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growth dynamics of planktonic and attached biomass, the qualitative behavior of three
order model (1) is analyzed. We have shown the multiplicity of positive equilibria with
the possibility of bi-stability of two positive equilibria which can promote the planktonic
and/or aggregated biomass. Whereas, the bi-stability could occur in the classical chemo-
stat model only when the growth rate is non monotonic. The simulations illustrate the
mathematical results demonstrated.

A. Proofs
Proof of Prop. 2.1. One has

S=0= 8=DS; >0,
v=0 = v=au®>>0.

Hence S(t) > 0 and v(¢) > 0 for all ¢ > 0. One has also
u=0= au=0bw =0,

and then u(t) > 0 for all ¢ > 0. Denote z = S + u + v. The sum of the three equations

of (1) gives
2(t) <D 25‘- — 2(t)
~ v D,U m .
Hence, one has
z(t) < RSZ- + (2(0) — ESin)e_D”t forall t > 0. (6)
D, D,

We deduce that

D
z(t) < max (2(0)7 D—SZ- > forall ¢ > 0.

Thus, the solution of (1) is positively bounded and is defined for all £ > 0. From (6), it
can be deduced that the set €2 is positively invariant and is a global attractor for (1). H

Proof of Lemma 3.1. We must solve the system

D(Sin = 8) = pu(S)u + po(S)v
0 = [uu(S) — DyJu — a(u + v)u + v 7
0 = [up(S) — Dylv + alu + v)u — bu.

Making the sum of the second and the third equation of (7), we obtain
Pu(S)u+ ¢y (S)v = 0. (3

This equation admits positive solutions w and v if and only if ¢, (S) and ¢,(S) have
opposite signs, i.e. S is between A, and A,. Therefore, we must seek solutions (.S, u, v)
of (7) such that S is between A, and A, . In this case, ¢, (S) # 0 and the equation (8) can
be rewritten as

_wu(S)

v=— S €))

If w = 0, then from the second equation of (7), we deduce v = 0. If v = 0, then from the
last equation of (7), we deduce u = 0. Hence we cannot have an equilibria of extinction
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only of u or only of v. Replacing v by its expression (9) in the second equation of (7), we

obtain
w=Th(S) with U;(5)= 2uld)e(S) =) (10)

a’[(ﬁv(s) - QDu(S)] -
Note that u defined by (10) is positive if and only if A, < 5 < A\, or A\, < § <
min(A, Ay, ), that is to say, if and only if S € I.
Therefore, we must seek the solutions of (7) such that S € I. By replacing u by (10)
in (9), we obtain

©2(S)(pu(S) — b)
alu(S) = vul(S)]eu(S)

Making the sum of three equations of (7) and replacing v and v by (10) and (11), it follows
that S is solution of equation (3). Hence,

©u(S)(@u(S) —b) D(Sin, — S)u(5)

v=VW1(S) with Vi(S)=— (11)

alps(S) — @ulS)] Dupu(S) = Dypu(S)
Therefore, (10) and (11) can be rewritten as w = U(S) and v = V(.5). [ |
Proof of Prop. 3.3. We show that

1) If A, < Ay, then U(+) is decreasing on INJ0, S;,, [ and V4 (+) is increasing on I.

2)If Ay < Ay, then Uy (), V/(+) and Vy(+) are decreasing on IN]0, Syy|[.
Indeed, we have

N —_— — I . — / . —
U/(S) - D 0o (Dypy — Dypu) — iy Dy0u (Sin f) + 1, Dy oo (Sin 5)7
(Du<Pv - Dv@u)
Ul/(S) _ ﬂ;%pw(@fu —b) + p,0u(b — vu) .

a(py — pu)?

Therefore, if A\, < Ay, then U’(S) is negative on IN]0, Sy, [ and if A, < A, then U{(S)
is negative on /. In addition, we have

~u(Dupu = Duspw) = 1y Dup(Sin — ) + 1y Dupu(Sin — )
VI(S) =D (DUQDu - Du(p”)2 ’

—,U,; [@u‘ﬁv(@v - b)](2¢v - (Pu) + “;‘pi(@u - b) (29911 - QOU)
a(po — u)?p2

If Ay, < Ay, then V{(S) is positive on I and if A, < Ay, then V'(S) is negative on

IN]0, S;,[ and V{(S) is negative on I. Therefore, if A, < A,, then

Vi(8) =

" =U(S")>u"* =U(5") and v* =V (5") <v™ =V1(5").
Furthermore, if A, < A, then

w =UL(S*) > u™ =U1(S*) and v* = V(S*) > v*™* = V(S*).

Proof of Prop. 3.4. When a = 0, the system (7) is written as
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D(Sin, — S) = pu(S)u + p (S)v
0 = [pu(S) — DyJu + bv (12)
0 = [uyp(S) — DyJv — bu.

The third equation of (12) can be rewritten as
wu(S)v —bv = 0.

If v = 0, then from the second equation of (12), we deduce u = O or S = A,. If
u = v = 0, then from the first equation, one has S = S;,. If v = 0 and S = A, then
from the first equation we deduce

which is positive if and only if A,, < S;;,. If v is nonzero and the equation ¢, (S) = b has
solution S = )y, then from the second equation of (12), we deduce « is nonzero and

©u(Ap)u + bv = 0.

This equation admits positive solutions « and v if and only if A\, < A,. Making the sum
of the second and the third equation of (12), we obtain the equation (8) which admits
positive solutions u and v if and only if A is between A, and A,. Making the sum of the
second and the third equation of (12), the first equation is rewritten as

D(Sin — Xp) = Dyu + Dyo.
Replacing v by its expression (9), we obtain

D(SYn - Ab) = Duu - Dv QOU(Ab)U = Du@U(Ab) - Dv(pu(Ab)

©u(Ap) ©u(Ap)
Hence v = U(\) and from the equation (9), we deduce that v = V(\p) which are
positive if and only if A, < A\p < A, and Xy < ;. |

Proof of Prop. 3.5. When b = 0, the system (7) is written as

D(Sin — S) = pu(S)u + iy (S)v
0= (pu(S) — Dy)u — a(u+v)u (13)
0= (u(S) — Dy)v + a(u + v)u.

Note that in this case b = 0, the expression (2) of H(.S) is simplified and becomes

(1[%,(5') - SOMV(S)] '

Moreover, A\, = A,. Therefore, the interval I is empty in the case A\, < A,. The second
equation of (13) can be rewritten as

H(S) (14)

ou(S)u — a(u + v)u = 0.

If u = 0, from the last equation, we deduce ¢, (S) = 0, means that S = A, and from
the first equation v = V(A,) which is positive if and only if A\, < S;,. The previous
calculation shows that if u is nonzero then

D(Sin — S) = Dyu+ Dyv = Dyu — Dvﬁu.

v
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Hence u = U(S) and v = V(.S) which are positive if and only if A, < S < A, with S
solution of the equation D(S;,, — S) = H(S). [ |

Proof of Prop. 3.6. The Jacobian matrix at washout Ey = (S;y,0,0), is given by

=D —pu(Sin)  —po(Sin)

JEO = 0 Lpu(sm) b
0 0 ©o(Sin) — b
The eigenvalues are —D, ¢, (Siy) and ¢, (Sin) — b. [ ]
Proof of Prop. 3.7. The Jacobian matrix at a positive equilibrium E* = (S*, u*, v*) is
given by
—mi —Mmiz2 —Mi3
Je- = | ma  —moz a3
ms31 mz2  —M33

where mqy; = D+ pl,(S*)u* + ) (S*)v*, mia = pu(S*), miz = uy(S*),
moy = i, (S™)u*,  mag = a(2u* +v*) — ¢, (S*), a3 =b— au*,
ma1 = i, (S*)v*,  mge = a(2u* +v*) and mgz =b— au* — p,(SY).
From the second equation of (7), we have
0o (Su* — a(u* + v )u* +bv* =, (S*)u* — a2u* +v*)u* + a(u*)? + bv*
= —mgu* +a(u*)? 4+ bv* = 0.

Hence mos = au* 4 bv* /u* > 0. From the third equation of (7), we have

0, (S*)0* + a(u* + v*)u* — bv* = —maz0* + a(u*)? = 0.
and therefore,

*) 2
w) o

msz3 = a

,U*

Thus, all m;; are positive for all 7,5 = 1,...,3 with (¢, ) # (2,3). The characteristic
polynomial is given by

P(A) = |Jgs — AxI| = coA®* + c1A* + oA + ¢3,
where I is the 3 x 3 identity matrix, cg = —1, ¢; = —(mq1 + mag + ms3),
Co = —M12M21 — M13M31 + M32a23 — (m11m22 + myiims3 + m22m33),

c3 = —mq1(Magmaz —Mgaasz) —Ma1 (Mi12M33 +mzamis) —mai (Mi2a23 +mi3maz).

It is clear that ¢o = —1 < 0 and, since m;; > 0,7 = 1,...,3, we have ¢; < 0. It can be
shown by long and tedious calculations (see [2]) that

co < 0and ciey — coez >0

and that we have the following properties
1) In the case where \,, < \,, we have ¢3 < 0 if and only if H'(S*) > —D.
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2) In the case where A\, < \,, we have ¢3 < 0 if and only if H'(S*) < —D.
The result of stability follows from the Routh-Hurwitz criterion, which asserts that £* is
locally exponentially stable if and only if

¢ <0, 1=0,...,3
cico — coeg > 0.

This completes the proof. |

B. Parameters used in numerical simulations

Parameter || m, | K | me | Ko | D | D [ Do | @ | b | S0 || A | A
Fig. 4 60 | 05 | 06 | 20 [ 50 | 50 | 02 | 001 | 001 | 158 || 25 | 10
Fig. 5 20 | 15| 2 | 27|47 15 1 1.2 3 46 || 45 | 27

Table 2. Parameter values and the corresponding \., and X,.
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