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ABSTRACT. In this article, we consider a multiphasic incompressible fluid model, called the Kazhikhov-
Smagulov model, with a specific stress tensor which depends on density derivatives, introduced by
Korteweg. We establish the existence of global weak solution to this model in a 3D bounded domain.

RESUME. Dans cet article, nous considérons un modéle de fluide incompressible multiphasique, ap-
pelé modele de Kazhikhov-Smagulov, avec un tenseur de contraintes spécifique qui dépend des dé-
rivées d’ordre élevé de la densité, introduit par Korteweg. Nous établissons I'existence d’une solution
faible globale pour ce modéle dans un domaine borné en 3D.
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1. Introduction

We are concerned with systems of PDEs describing the evolution of mixture flows.
Let Q be a bounded open set in R? with boundary T that is regular enough and let n be
the outwards unit normal on the boundary I'. We denote by [0, 7| the time interval, for
T > 0. The mixture of two fluids is described by the density p(t, ) > 0, the velocity
field v(t,z) € R3 and the pressure p(t, ), depending on the time and space variables
(t,x) € [0,T] x Q. According to [4, 7, 8], we consider the Korteweg equations for gen-
eralized incompressible fluids whose density and volume change with the concentration
¢(t, ) > 0 and eventually the temperature, but not with pressure. In general, the velocity
field v of such incompressible fluids is not solenoidal, divv # 0. Assuming that each
fluid is incompressible, the mass density is conserved in the absence of diffusion. The
theory of Korteweg, introduced in [9], considers the possibility that stresses are induced
by gradients of concentration and density in a slow process of diffusion of incompressible
miscible liquids. Such stresses could be important in regions of high gradients and they
mimic the surface tension.

In order to model the fluid capillarity effects, Korteweg introduced in the usual com-
pressible fluid model a specific stress tensor which depends on density derivatives. Fol-
lowing the rigorous formulation presented in [4] (see also [2]) and neglecting thermal
fluctuations, the model reads

Orp + div (pv) = 0,
O (pv) + div (pv @ v) = pg + div (S + K),

where g stands for the gravity acceleration (but it can include further external forces). The
viscous stress tensor S and the Korteweg stress tensor K are given by :

S = (vdive —p)I +2uD(v),
K = (aAp+BIVpP) I +6(Vp© Vp) +~D3p,
where D(v) = (Vv + VoT) /2 is the strain tensor and D?p is the hessian matrix of the

density p. Here, the pressure p and the coefficients «, 3, , d, u and v are functions of p.
The special case

ey

@)

o= Kp, Bzg, d=-kr, 7=0,

for some constant £ > 0, corresponds precisely to Korteweg’s original assumptions con-
nected with the variational theory of Van Der Waals. In this case, the Korteweg stress
tensor yields
K
K = Z(Ap" = [Vpl)T = k(Vp & Vp). 3)

Writing

div K = kpV(Ap) = kV(pAp) — kVpAp, 4)
and incorporating V(pAp) in the pressure term, we obtain —xV pAp as a right hand side
term in the momentum equation.

The Korteweg’s theory can be applied to processes of slow diffusion on miscible in-
compressible fluids, for example, water and glycerin. The two fluids are characterized
by their reference mass density : p; the density of the dilute phase and ps the density of
the dense phase. We need the velocity field of each constituent : vy (¢, ) and vy(t, ),
respectively. We define the volume fraction of the dilute phase 0 < ¢(¢,x) < 1:

_ .. Volume occupied at time ¢ by the dilute phase in B(z,r)
o(t ) = lim B(w, )] '




346 Proceedings of CARI 2016

Then, admitting that each fluid is incompressible and keeping a constant mass density, the
density of the mixture is defined by

p(t,x) = pa(1 = ¢(t, @) + pro(t, x) = pa + (p1 — p2)o(t, ).
N —— N——
=p2(t,@) =p1(t,x)

Writing the mass conservation for the two phases, we obtain
Op + div (pv) =0,

with pv(t, &) = (pav2 + p1v1)(t, ) presents the mean mass velocity v(t, x), which is
not divergence free, div v # 0. Moreover, we define the mean volume velocity

u(t,z) = (1 - ¢(t,x))va(t, @) + ¢(t, ®)v1 (L, ).

Applying the definitions, we verify that the velocity field w is solenoidal (divu = 0).
According to Kazhikhov and Smagulov [10], we consider the following non-standard
constraint associated to the pressure p :

diveo = —div (AV In(p)), Q)

where A > 0 is a diffusion coefficient. This Fick’s law (5) describes the diffusive fluxes
of one fluid into the other, see also [3]. Obviously, when we set

v=u— AVIn(p), (6)
the relation yields (5). The mixture density p verifies the mass conservation and we obtain
Op + div (pu) = div (AVp). @)

For the momentum equation (1), we start by developing each term using the relation (6),
in order to eliminate v. After some calculations and using (4), we get

I (pu) + div(pu @ u) — Adiv(Vp @ u) — Adiv(u ® Vp)
+ AV (u- Vp) + Adiv(2uD?2 In(p)) — div(2uD(u)) 4+ Vp

®)
— AN (VAp - div(m) = pg + kV (pAp) — NV pAp.
P

Choosing the dynamic viscosity y constant, as in [6], we have div(Qp,D(u)) = uAu
and div(2uD3 In(p)) = 2uVAIn(p). Including all the gradient terms in the modified
pressure

P=p+Av+2u)Aln(p) + Au-Vp — N2Ap — kpAp.

Then, we obtain the Kazhikhov-Smagulov-Korteweg model in conservative form :

Oy (pu) +div (pu ® u) — Adiv (Vp ® u) — Adiv ('u, ® Vp) — uAuy

LVP 4 Ndiv (YLEVPy

Op + div (pu) = NAp,
divu = 0.

=pg — kVpAp,  (9)
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The tensorial product matrix of two vectors a = (a;)%_;, b = (b;)L, is denoted by a @ b
with ceefficients (@ ® b); ; = a;b;. Taking into account the equalities

A (pu) +div (pu @ u) — Adiv (Vp @ u) = pdu+ p(u- V)u — A(Vp- V)u,
—Adiv (u® Vp) = —A(u-V)Vp = —=AV(u-Vp) + Adiv (pVu").
Then, denoting @, = (0,T) x 2, ¥ = (0,7T) x T, the Kazhikhov-Smagulov-Korteweg
(KSK) model can be written in Q. as :
p(Ou+ (u-V)u) — A(Vp- V)u+ Adiv (pVu”) — pAu+ VP

. VpoV
+A\2div (M) = pg — kApVp, (10)
dip + div (pu) = MAp,

divu = 0.

The KSK model (10) is completed by the following boundary and initial conditions

u(t,x) =0, S—Z(t, x) =0, (t,x) € X, (11)
’U,(O,:II) = UO(CC), p(07 (II) = pO(w)a RS 97 (12)

with the compatibility condition div ug = 0, where py : @ — Rand ugp : Q@ — R? are
given functions. Throughout this work, we assume the hypothesis

0<m<pp(x) <M< 400, x€. (13)

The paper is organized as follows. In Section 2 we present the main results about (10).
After some preliminary results recalled in Section 3, the proof of existence of global weak
solution for (10) is given in Section 4. The conclusions are summarized in Section 5.

2. Functional setup and main results

Let us introduce the following functional spaces (see [11, 13] for their properties):

V = {ueD)?’: divu=0inQ},

V = {ueHjQ): divu=0inQ},

H = {uel?Q): dive=0inQ, u-n=00nT},

Hy = {peHb(Q): @zoonI‘,/p(m)dwz/po(m)dw}, 5> 2.
on Q Q

The spaces V and H are the closures of V in H(lJ(Q) and L?(92), respectively.

Let us recall the definition of weak solution for the KSK model (10). Such class of
solutions can be found in [1] for Kazhikhov-Smagulov type models and in [13] for the
incompressible Navier-Stokes equations.

Definition 2.1 A pair of functions (u,p) is called a weak solution of problem
(10),(11),(12) on 2 if and only if the following assumptions are satisfied :



348 Proceedings of CARI 2016

1w e L>(0,T;H) N L*(0,T;V), p € L>=(0,T; H'(Q)) N L*(0,T; HY) and
0<m<p(t,e) <M < 400, ae (t,x) € Q.

2) Forall ¢ € C*([0,T); V) such that ¢(T,.) = 0, one has :

/0 {= (w0016 + ((pu = AVp) - V)) + (Ve V) — A(pVu", Vp) at

T 1 T
¥ [ V00Vt = [ (g — kAT B)dt+ (oo, 6(0)).
0 0 (14)
3) For all € C*([0,T]; H'(Q)) such that o(T,.) = 0, one has :
T
| {@ V0.0 £ 2V0.90) = (000 it = (o). 1)

REMARK. — The pressure P associated with the weak solution (u, p) can be obtained
using (14) and the Rham’s lemma [13].

We present the aim of this work about the Kazhikhov-Smagulov-Korteweg model (10).
Under some assumption on the coefficients A, u, x, we prove the global existence of weak
solution of (10) for arbitrary initial data and external force field. Our main result reads :

Theorem 2.2 Let ug € H, po € H'(Q) satisfy (13), T > O and g € L?(0,T;L*(Q)). If
2

A A
; max (1, —) is sufficiently small, then there exists a weak solution (u, p) of (10) global
K

in time such that
we L>(0,T;H) N L*(0,T;V),
pEL® (0, T Hl(Q)) N L2 (O,T; Hﬁ,),

with finite and uniformly bounded energy such that ¥Vt < T,

IVeu®) 12, +5 1 Vet) |2

L2(Q) L2(Q)

OM2 T
<l o I, 41 Vo0 I, + S [ 90 IR, ds
H 0

L2(Q) L2(Q)

[ (B ITa) 2, A 206 2, )i

L2(Q) L2(Q)

3. Preliminary results

Given the initial density po and the velocity field u, we find the density p as solution
of the following Neumann problem :

atp-l—UVP:)\AP iHQT,

;()9(0,1:) = po(x) inQ, (16)
P _
n 0 on Y.

The density p satisfies the maximum principle. This result is classical (see [1]).
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Proposition 3.1 If (u, p) is a weak solution of (10), then
0<m<p(t,z) <M < +0 ae. (t,x) € Q,. a7

Proposition 3.2 Let py € H'(Q) verify (13) and w € C([0,T}; VN H*(Q)). Then there
exists a unique solution p of (16) such that

p€L>(0,T;H () N L*(0,T; HY ).

Moreover, we have

. 2 2
oS5 1) [ = oo Il (18)
4 2 1 2
< —
/O Vo) 1,0 dt < 55 e Il g, (19)

sup || Vo(t) 2, < Callpo Iy, (L+ sup [lu() P, ). QO
0<t<T 0<t<T

L2() H(Q)

L2(Q) H1(Q)

T
C
[ uss0 2, de < Sl 0 s u@) 2., ). @D
0 A 0<t<T

where C\y is a positive constant depending only on \.

Given py € H'() satisfying (13) and w € C([0,7]; V N H?(2)), let p the solution
obtained by Proposition 3.2. Therefore, it is clear that the following map is well defined

S:C([0.T; VAH*(Q)) — L®(0,T;HY(Q)) N L*(0,T; HY ),
such that p = Sw is well defined.

Proposition 3.3 Let py € H(Q) verify (13) and uy,us € C([O, TEvVN HQ(SZ)). Set
p = p1— p2 = Suiy — Sus and u = w1 — us, we have the following estimates :

T 2
M
2 2 2
< —
S0P, o) 1172, +A/O Vo) 11, q, @t < TozltlgT lu@®) ., @2
T
2 2
s V600 12, + ) | vsew iz,
2T 2M2T
< — su A\ 2 ) u ||? ——— su us ||? U u ||? .
< Aoét%” P, 2 le e, +—53 e [RTEN . S lwll, .,

(23)
We recall that there exists an orthonormal basis of L*(Q2) defined by

wr € VOH*(Q)
—IP’Awk = /\k Wi on Q,

where PP is the orthogonal projection operator of Lz(Q) onto H. For any n € N*, we
define by X,, the finite dimensional subspace of H such that

Xn = Vect{wg, k=1,...,n},
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and we consider the orthogonal projection P,, : L?(Q) — X, defined by
Yw € H, (Prw, v) = (w, v), Yo € X,. (24)

As in [5], we introduce a family of operators M[p] : X,, — X, defined by
(Mplv, w) = /ﬂp v-wdr for all v,w € X,. (25)
If p € L>=(2), then M|p] is well defined. Moreover, let m > 0, we set
D = {p e Lo(Q): pla) >m > o}.
Proposition 3.4 M |p] is one-to-one and its inverse verifies

- . -1
I M leenxa) < (inf p(@)) ¥peD, (26)

- - Cn
I Mlpa] ™ = Mlpa] ™ e xa) < —5 101 =p2 20, P12 €D, 27

where C,, is a constant depending on the dimension of the space X,.

4. Proof of Theorem 2.2

4.1. Faedo-Galerkin method
We are looking for the approximate solutions
(Wn, pn) €C([0,T);Xn) x C([0,T]; H'(Q) N HY)

satisfying

/ O (pnuy) - vdx —I—/ pn(up - V)u, - vde — )\/ (Von - V)uy, - vdx
Q Q.

+/ (wn - Vpn) Uy, - vdz — )\/ Appthy, -vde — i | Au, - vdz
Q 0 Q

+ A / div (p,Vu, ) - vde + A\ / div (M) -wvdx

JQ JQ Pn (28)
= / Png - vdT — /-c/ AppVpy - vdx, Vv € X,,

Q Q

[ nde+ [ wn-Vounde =2 [ Apunde, e H'(@),
Ja Jo Jo

un(o) = Uonp = ]Pn’LLO,

pn(0) = po.

We set

N[unv pn] = _((pnun - Avpn) . v)un - (un . vpn)un + )\Apnun

+ A, — Adiv(p, Vul) — Azdiv(M) — kAP P+ pug.

(29)
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Taking (28); with v = wy, for k = 1,...,n, and integrating in time between 0 and
t < T, the solution u,, verifies the following integral equations fork = 1,...,n:

¢
/pn(t)un(t)-wk dx :/qo'w;C dx +/ /N[un,pn]-wk dz ds, (30)
Q Q 0 Ja

where p,, = Su,, and q; = pouo,. Thanks to (24) and (25), we rewrite (30) as follows :

(M[Pn(t)]un(t), wk> = (ano, wk> + (Pn /Ot Nun(s), pn(s)] ds, wk),

fork =1,...,n. Since M|p,] is invertible, then the resulting equation reads

wy € C(0. T Xn). (1) = Mipa (0] B, (g0 + /0 Nlata(s). pu(s)] ds). 31)

Hence, u,, appears as a fixed point of a suitable functional ¥

U C([0,T];Xn) — C([0,T]; Xy)

defined by
t
W (un) (1) = Mlpu ()] *Pu (0 + / Nlun(s), pu(s)] ds),  forall ¢ € [0,T].
0
Let X be the Banach space C ([0, 7]; Xy, ) endowed with the norm
g = 510 0 L -

In order to apply the Banach fixed point theorem, we establish some uniform estimates
for ¥. With Propositions 3.2, 3.3 and 3.4 in mind, we have the following :

Proposition 4.1 There exists a constant C > 0 depending on n, A\, u, k, M, m,
Do ||H1<n>’ such that for all u,, € X,

9200020

M 1
10 () g < — 60 ], + Cmax(T.TH) (14 un 2 ), G2
and for all ul ,u? € Xr,

10 (un) = ¥ (us)

[P

< cmax(T,T%)(H I o |

L2(@) (33)
+ g %, + Tl

12.0) b~ w2 s -

M
At this stage, we set R = 2— || uyg || and BE = {u €Xt, [lulx,.< R} .
m

L2(Q)
Proposition 4.2 There exists T,, €]0, 1[ small enough and u,, € Bg" such that

Up = VU(uy,).
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Proof. Let 0 < T}, < 1 such that

L2(Q)

max(CT4[R+ =, CTd [+ [ wo |, +2R%]) <

DN =

Thanks to Proposition 4.1, we verify that U is a contraction mapping on Bg”' and we
conclude the existence of a unique fixed point of U. ]
It is clear that u,, the fixed point of ¥, obtained in Proposition 4.2, implies that (w,,, p, =
Swuy,) is a local solution of the Galerkin approximate problem (28). Now, we will prove
that this local solution is in fact a global one. For this, we establish some uniform esti-
mates for (u,,, p,) with respect to time.

A A2
Proposition 4.3 [f — max(1, —) small enough, there exists a constant C > 0 depending
L K

on po,ug, g, M, j1, k, such that for all t € [0,T,)

/1
m | ua®) 12, + /u Vu(s) 2, ds < C, (34)
100 I,y + 2 [ Bn6) I, 5 < . Gs)

Evidently, thanks to the previous Proposition 4.3, we have the following :

Corollary 4.4 (w,, p,,) is a global solution of (28) and for all T > 0,
(Wn)p is bounded in L™ (0,T;H) N L*(0,T;V), (36)
(pn)n is bounded in L>(0,T; H'(Q)) N L*(0,T; HY,). (37)

4.2. Uniform estimates for time derivatives

In this section, we establish uniform estimates for time derivatives 0; p,, and 0; u,.
Proposition 4.5 Let T > 0. The sequence (O; pn)n is bounded in L*/3(0,T; L?(Q2)).

Proof. Taking the L?-norm of O; p,,. Applying the Holder and Gagliardo-Nirenberg
inequalities and the inequality : || Vp || < CollplM2 0 Ap |2, we get

Li(Q) — L0 (Q) L2(Q)

| O pn ||L2(Q) Al Apy ||L2(m +C | un ”1/4 | Vu, ||3/4 I pn ”1/2 | Apn ||1/2

L2(Q) L2(0) L0 () L2(q)

By the uniform estimate (34) and (17), we get

| O pn ”LQ(Q)S A Apy, “Lz(n) +C [ Vu, ”3/4 | Apn ”1/2 . (38)

L2(Q) L2(Q)
1
Next, applying the Young inequality ab < 5((12 + %) in (38), we get
9 pu ey < Al Ap Loy +C | Vs [722,
Thanks to the uniform time estimates (34) and (35), we deduce that || 9; pr, ||, 1s

bounded in L*/3(0,T). [ ]
Now, by following [1], we establish an estimation of the fractional time derivative of w,,.
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Proposition 4.6 Let 0 < 6 < T such that

L2(Q)

T—6
/ | un(t+6) — wn(t) |2, dt < C 6%, (39)
0

where C a constant independent of n and 9.

Proof. For all functions ¢ € X, the approximate solution (u,, p,,) verifies :

_/ Py, - P dx — / PnUp - g¢ dx — / pn(un : )¢ Uy dx
Q
+u | Vu, :Vodr + A /(Vpn V)o - u, dm—)\/ onVul : Vo dx  (40)

)\2/ M : Vo dx = / R qbd:c—n/ AppVpy - ¢ dz.
Integrating (40) with respect to T between ¢ and ¢ + §, and taking @ = w,, (t + ) — u, (1)
) wn(t+0) = pu(®) ()] [n(t + 6) — ,(1)] da

pul(r) 9(7) = K Bpu(7) Vpu(r)) - (wnlt +8) = un (1)) da dr

K
(( — AVpu(7)) - ) (tn(t + 8) — wn(t)) - wn(7) dav dr

(u Vatn (1) — A pn(7) VUl (T)) LV (un(t 4 0) — un (1)) da dr

+ Az/ / \ T) ®Vpn( ) LV (n (4 6) — wn (1)) da dr.

(41
Using the following identity

P (t40) W (E+8) = (£) Wi (£) = p (£+0) [ (E48) —wn (8)] + [ pn (t40) — pn (8) | un (2),

then, (41) becomes

| /Dl ) [ +8) = wn ()] 12,

== [ Tn(t+ 8= a(0)] [0+ )~ ()] (1) de
/ s / pu(r) () — 8 Dpu(r) Vpu(r)) - (atn (1 +8) — (1)) d dr
/ / (P (T)tn(7) = AV (7)) - V) (w0t +8) = (1)) - un(r) dit i
/ / V(1) = A pu(T)Vl () 2 V (a1 4 8) — (1) dee dr

e " Vpa(r )@(jm( 7) LV (i (t + 8) — (1)) dez dr

L(t) + I(t) + I3(t) +nI4(t) + I5(t) + Is(t) + I7(t) + Is(t).

(42)
Let us estimate 74 (¢). Applying the Holder inequality, we get

L] < 1 pat+8) = put) a2t 4+ 8) = (8) [ ol 20a(0) ]y
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In particular, we write

t+6 (9
o [T op,
pult+6) — pult) = / 2 g

Using the Holder and Young inequalities and the embedding H*(Q)) C L*(£2), we obtain

2
or "tz L2(9) + 1 Vun(t) ”L2<n> )

Lo [T p, s i
)< et ([ 151k, ar) (I V) I
t

In the same way, we verify the following estimations :

t+06 1
1 2
L) < o5t ( / la(r) 12, ) dr) " (I Vualt+0) 12, + I Tua(®) 12, ),
1 e 2 3 2 2
13(t)] < ot ( / | Apu() 12, dr) (1 Vua(t+0) 12, + | Vua®) 12, )
Similarly, one can obtain the desired estimates of I;(#) terms, for j = 4,...,8.

At last, if we choose 0 < § < 1 and taking into account Propositions 4.3 and 4.5, then by
gathering together all the above estimates, we rewrite (42) as follows :

| Vonlt+ ) [t +8) = un®)] |2, < C3% (| ualt+6) 12, + | Vaa®) 2, ).

L2(Q) — L2(9) L2(Q)

Thanks to the lower bound of p,, and Proposition 4.3, we finish the proof. |

4.3. The existence of solution (u, p)

The final step to complete this study is to employ the previous uniform estimates in
order to pass to the limit in the approximate problem (28). When n — 400, we have

U, — ug in H strongly.

Thanks to (36) and (37), choosing the subsequences (w,,)n and (p, ), such that

u, — w in L?(0,T;V) weakly,

U, — u in L™ (O,T ; H) weakly-star,
and

pn —> p in L?(0,T;HY) weakly,

pn —> p in L>(0,T; H*()) weakly-star,

Oy pn —> Orp in L*3(0,T;L%(Q)) weakly.

We are able to pass to the limit in the linear terms of (28), thanks to these above conver-
gence results. Now, to ensure the passage to the limit in the nonlinear terms of (28), it is
necessary to use the following strong convergence :

Proposition 4.7 There exists a subsequence (W, pr)n, which converges strongly to (u, p)
in L*(0,T; L*()) x L?(0,T; H'(R)). Moreover, (u, p) is a weak solution of (10).

Proof. Applying some compactness theorems [13, Chap.3, Theorem 2.1] for p,, and [12,
Theorem 5] for u,, and using Propositions 4.5 and 4.6, we get to the desired result. W
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5. Conclusions

In this paper, we study the system of PDEs derived from the compressible Navier-
Stokes equations with presence of a specific Korteweg stress tensor, called the Kazhikhov-
Smagulov-Korteweg (KSK) model. We arrive at verify the existence of a weak solution
(u, p) of the KSK model (10) global in time with finite and uniformly bounded energy.
Then, we conclude the proof of Theorem 2.2, the main result of this paper.
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