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ABSTRACT. We study the inverse problem of identification of well’s location in a porous media via
boundary measurements. Our main tool is the topological gradient method applied to a convenient
design function.

RESUME. Nous étudions le probléme inverse d’identification des positions des puits dans un milieu
poreux par des mesures sur la frontiere. Notre outil principal est la méthode du gradient topologique
appliqué a une fonction objectif.
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1 Introduction

In hydrogeology, it is very difficult to construct an accurate simulation model for a
groundwater system. However, in many real situations, uncertainties can be related to
parameters caracterising the aquifer itself, or to external constraints, such as withdrawal
rates in wells, drilling and recharge. The knowledge of the aquifer withdrawal rates can
represent a largely unknown factor in real problems of groundwater resources modelling.
The inverse problem under consideration is to determine the location of wells using
boundary measurements. We consider the cases where we have Neumann or Dirichlet
condition on boundary of the wells and we use the topological sensitivity method.

The topological sensitivity analysis has been recognized as a promising method to
solve topology optimization problems. It consists to derive an asymptotic expansion of a
shape functional with respect to the size of a small hole created inside the domain. This
method was introduced by Schumacher [12] in the context of compliance minimization.
Then, Sokolowski and Zochowski [13] generalized it to more general shape functionals.

To present the basic idea of this method, let us consider a domain €2 in R2 and a cost
functional j(2) = J(ugq) to be minimized, where ug, is the solution to a given PDE
(model) defined in . For a small parameter ¢ > 0, let Q\ B(xg,¢) be the perturbed
domain obtained by the creation of a circular hole of radius ¢ around the point zy € €.
The topological sensitivity analysis provides an asymptotic expansion of j when ¢ goes
to zero in the form:

J\B(zo,€)) — () = f(e)g(zo) + o(f(€))- (D

In this expansion, f(¢) is a positive function going to zero with . The function g is
commonly called topological gradient, or topological derivative. It is usually simple to
compute and is obtained using the solution of direct and adjoint problems defined on the
initial domain. To minimize the criterion j, one has to create holes at some points = where
g(z) is negative.

The topological derivative has been obtained for various problems, arbitrary shaped holes
and a large class of shape functionals [5, 10].

This work is outlined as follows: Section 2 is devoted to the model setting; section 3 is
devoted to the formulation of the inverse problem and the introduction of the topological
asymptotic analysis in the case of a well with a Dirichlet or Neumann condition on its
boundary. In section 4 we illustrate the efficiency of the proposed method by several
numerical experiments then we conclude.

2 The model setting

Let Q be a domain of R%2 and I’ = 9. We assume that the wells are well separated
and have a circular form O, . = =, +e0F, 1 < k < m, where ¢ is the common diameter
and OF C R? are bounded and smooth domains containing the origin. The points x;, € 2,
1 < k < m, determine the location of the wells (Figure 1). These are the unknowns of
our inverse problem.
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Figure 1: Domain containing m wells having the same radius.

For simplicity, we assume that {2 is a homogeneous geological zone. Following [4], the
forward two-dimensional problem of groundwater flow in isotropic and homogeneous
medium, with wells O, = UZ; Oy, in the domain €2, can be formulated as follows:

—div(TVu:) =0 in 0\O.
Uge = H on F (2)
TVue.n =0 (or u. =0) on X,

Where X = 00k is the wells boundary; 7' is the transmissivity and u. is the pieozometric
head . Let Q. = Q\O..

3 The inverse problem and the misfit function

We consider the inverse problem of determining well’s location from overspecified
boundary data on I'. These data correspond to both Neumann and Dirichlet conditions.
We split these data in such a way to build two well posed problems:

- The first problem uses a Neumann condition on I,

—div(TVul) =0 in Q.
TVuéV.n = on I 3)
TVuY .n =0 (or u¥ =0) on X.
- The second problem uses a Dirichlet condition on I',
—div(TVu?) =0 in Q.
ul =i on I' 4)
TVuP.n =0 (or uP =0) on Y.
We define a misfit function:
J(w? ul) = [[ul — “‘?H%Z(szs) ®)

One can remark that if ¥ coincides with the actual well boundary X7 then the misfit
between the solutions vanishes v = u 2.

Our identification problem can be formulated as a topological optimization problem
as follows: given a flow ¢ and the measured H, find the optimal location of wells O,

inside the domain €2 minimizing the shape function j

(Pmin) ér;lcngz 7 (E)
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where
jle) = J(l,ul). (6)

The solution of this inverse problem depends on the boundary condition on the well’s
boundary taken in (4) and (3).

3.1 Case 1: the topological gradient considering Neumann
condition on X,

The aim of this section is to derive a topological asymptotic expansion for equation
(7) with Neumann condition on . :

—div(TVu:) =0 in Q.
TVue.n =0 on I
Uge = on I )
TVue.n = on Y.

A topological sensitivity analysis using Neumann boundary condition has already been
obtained for the elasticity equations in [5], for Laplace equation in [2] and for Maxwell
equations in [9].

Inspired by the master thesis work [8], the topological gradient method provides an
asymptotic expansion of a function j defined in (6) of the form:

j(e) —§(0) = —2aT2[Vud (2)Vol (2) + Vud (2).Vul (2)
b gl (2) —uf ()P + o),
In this case the topological gradient is defined by:
9(2) = ~22TIVu () Ve () + V) (2).90 (=) + g (2) — u ()P

where uév and u([)) are respectively the solution of the problems (3) and (4) with € = 0 (in
the domain without wells). Then v{’ and v are respectively the solution of the adjoint
problems associated to the problems (3) and (4) in the domain without wells.

3.2 Case 2: the topological gradient considering Dirichlet
condition on X,

Instead to the case 1, our goal here is to present a topological asymptotic expansion
for equation (8) with Dirichlet condition on X.:

—div(TVu:) =0 in Q.
TVu:..n =& on I )
Ug =H on I
Ug =0 on Y.

Topological sensitivity analysis with Dirichlet boundary condition on the boundary of the
hole O, was considered in [6] for Stokes equations, in [7] for quasi-Stokes equations and
in [1] for Navier-Stokes equations.

In this section, we derive a topological asymptotic expansion for function j. It consists
in studying the variation of j with respect to the presence of a small wells O, with a
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Dirichlet boundary condition on ¥.. As mentioned above, we will derive an asymptotic
expansion for j on the form:

ile) =3(0) = [ug' (2)vg (2) + ug’ (2)v5’ (2)] + (5
In this case the topological gradient is defined by:

9(z) = =21 T[ug (2)vg (2) + ug (2)vg (2)].

4 Numerical result

4.1 One-shot reconstruction algorithm

The identification procedure is a one shot algorithm based on the following steps:
— Step 1: solve the direct and adjoint problems,
— Step 2: compute the topological gradient g,

— Step 3: determine the negative local minima of g.
To test the efficiency of the proposed reconstruction process, different cases are studied.
Wells are likely to be located at spots where the topological gradient g is most negative.
The discretization of the direct problems (4) and (3) for ¢ = 0 with Dirichlet or Neumann
conditions is based on triangular mesh and the finite element method. The numerical
simulations are done using a 2D version of the software Comsol and Matlab [3].

The numerical tests are performed on a 20 km x 10 km rectangular domain, with a
homogeneous transmissivity 7’ = 0.001m?s 1.
We define the relative errors as:

|OPes|| — [|OPid]|

|
> = 100
7 = 0GR

B €))

for position’s identification: Where O P the position and O is the origin of the coordinate
system. We denote by subscripts ex and id the exact and identified solutions.

4.2 Effects of mesh size

The aim of these first numerical experiment is to study the influence of mesh size on
the results of the algorithm defined on the previous section. We consider a unique well
centred at zezq0t = (0.3,0.3) and having a radius e.

Mesh Mesh size b | Finite elements number Pig 7. [%]
1 0.00625 1025 (0.306, 0.305) 1.8

2 0.02 736 (0.31,0.312) 3.66
3 0.1 59 (0.315,0.315) 5.16

Table 1: Effects of mesh size for the case of single well located at (z = 0.3, y = 0.3).

In Table 1, we give a summury of results obtained with different mesh size h. The
finer is the mesh the smaller is the error.
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4.3 A case of four wells
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We identify four wells with Neumann (Case 1) and Dirichlet (Case 2) conditions on the
boundary of the wells. Computed positions and the relative errors are shown in Table 2.
In both cases, errors indicate that we have a good identification. We observe from the
Figure 2 that the region where the most negative gradient is located in the vicinity of

exact wells’ position.

Exact
Identified

(0.25,0.10)

(0.45, 0.40)

(0.80,0.10) | (0.15,0.40)

Case 1
T2 [%]

(0.26, 0.81)
4.29

(0.45, 0.41)
2

(0.78,0.09) | (0.17,0.41)
2.82 4.66

Case 2
Tz [%]

(0.24, 0.08)
4.23

(0.45, 0.41)
3.23

(0.80,0.11) (0.16, 0.41)
3.68 3.95

Table 2: Exact and computed wells’ locations and corresponding relative errors.
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Figure 2: (a) and (c¢) represent the exact and estimated positions, (b) and (d) are the

topological gradient distribution.

4.4 Sensitivity to the relative position

In the third case, we test the sensitivity to the relative position of two wells. We
consider two wells separated by a variable distance d, and we compute the relative error
for each distance (see Table 3). One can observe that if the wells are ”well separated” (far
from each other), the wells’ locations are well identified, but when the distance between
the wells decreases, the identification process is less accurate.
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d 0.63 [ 0.53 0.4 0.25 0.18 0.15
Case 1 T [%] 2.4 3.5 5.22 9.48 11.37 14.4
Case 2 7. [%] 2.1 3.22 | 4.84 | 9.16 10.59 14.2

Table 3: Influence of the relative distance between the wells.

4.5 Effect of noisy data

In the hope to try later this algorithm on real experimental data, we are interested in
this paragraph to the robustness of the algorithm with respect to noisy data. We consider
the case of single well located at point zezqet = (0.4,0.2). Then, we disrupt the over-
specified data on I' by adding relative white noise with different noise level. The results
are presented in the Table 4. Notice that for noise level less than 6% the method remains
efficient and results are in good agreement with the exact ones, whereas, since the noise
level is higher fictitious flaws show up (see Table 4).

Noise level (%) 4 6 10
Case 1 Location (0.429,0.197) | (0.438,0.191) | (0.459,0.178)
Error 7 [%] 5.83 7.81 12.59
Case2 || Location (0.381,0.192) | (0.368,0.181) | (0.354,0.171)
Eror || . [%) 1.12 7.44 10.87

Table 4: Effects of various noise levels for the case of single well located at (z = 0.4,
y =0.2).

We consider the case of three well separated located at point z;, ¢ = 1 : 3 having the
same radius ¢, the coordinates of the wells are z; = (0.15,0.4), ze = (0.8,0.15) and
z3 = (0.45,0.4). Then, we disrupt the overspecified data on I" by adding relative white

noise with different noise level.

[ [[ Noiselevel (%) | 4 [ 6 [ 10
. (0.131,0.42) [ (0.123,0.432) | (0.093,0.476)
7 (%] 2.98 5.14 13.52
Cas1 PZ, (0.819,0.159) | (0.829,0.169) | (0.839,0.175)
7 [%] 2.5 4 5.29
i (0.455,0.444) | (0.462,0.44) | (0.475,0.475)
7. [%] 5.59 5.96 11.57
2 (0.136,0.412) | (0.128,0.425) | (0.102,0.456)
7 [%] 1.56 3.89 9.37
CasTI 2 (0.823,0.165) (0.85,0.18) (0.89,0.21)
7 %] 3.12 6.74 12.34
= (0.459,0.401) | (0.465,0.42) | (0.472,0.439)
7 %] 1.32 4.07 7.06

One can note that for less than 6% of noise the wells are very well located wheras for
a noise great than 10% it will be difficult to locate their positions (see Table 5).

Table 5: Effects of various noise levels for three wells.
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5 Conclusion

In this work a new procedure for location of wells from overspecified boundary data
based on the minimization of a misfit function type for identifying the positions of the
wells. We develop an identification process related to the choice of type of boundary
condition on well boundary.

The developed algorithm is fast since it a one shot algorithm. The method seems
relevant in all the tested cases: multiplicity of wells with different position and noisy
data. However, it is important to note that the present inverse problem is very sensitive to
the quantity and quality of "available" data. The more over-specified data are available,
the better are the recovered boundary data.
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