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RESUME. Dans ce travail, nous discutons de I'incidence que peut avoir la surmortalité due & une ma-
ladie infectieuse sur la dynamique d’'un modele Proie-Prédateur de type Leslie-Gower avec maladie
chez les Proies. La maladie infectieuse a le formalisme épidémiologique SIS (Susceptible-Infecté-
Susceptible). Nous procédons a une analyze qualitative du modéle nous permettant de calculer des
seuils écologiques qui résument les résultats de stabilité des différents équilibres. Nous mettons en
exergue des conditions pour lesquelles la maladie disparaitrait de la commuanauté ou deviendrait
endémique. Finalement, nous présentons des simulations numériques qui illustrent nos résultats ana-
lytiques.

ABSTRACT. In this paper, we discuss the incidence of disease-induced death in a Leslie-Gower Prey-
Predator model subjects to an infectious disease affecting only Preys. The infectious disease has
the epidemiological SIS (Susceptible-Infectious-Susceptible) formalism. We carry out a qualitative
analysis through which we compute ecological thresholds involving biological parameters of Preys,
Predators and disease dynamic. We further investigate stability results of model steady states. We
further highlight conditions, involving ecological thresholds, under which disease will disappear from
the community or will become endemic. Finally, we show some numerical simulations in order to
illustrate our analytical results.
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1. Introduction

A Leslie-Gower Predator-Prey model is a two species food chain with the particularity
that the carrying capacity of Predator population is proportional to the number of Preys i.e.
when there is a few quantity of Preys, predation is negligible so Predators find alternative
foods ([10]). Since Predators and Preys that are involved in this model can be subjected to
infectious disease, a major issue in mathematical modelling is to understand the effects of
infectious diseases in regulating natural populations, decreasing their population sizes or
reducing their natural fluctuations ([2], [9], [10], [8]). Many studies have been carried out
in order to analyze the influence of infectious disease in Predator-Prey dynamics through
mathematical modelling. Generally, there are more macroparasitic infections which can
affect only preys, only predators or preys and predators. According to several epidemio-
logical models and studies, infectious disease is able to leads a sur-mortality in the host
population ([1], [3]).

Disease-induced death has been identify by a wide of authors as able to lead the so-
called *backward bifurcation’ in epidemiological models ([1], [3] and references therein).
Recall that in mathematical modelling theory, a backward bifurcation occurs when the
disease-free equilibrium and the endemic equilibrium are simultaneously stable when a
given threshold takes some values ([1] [3]). In other words, the infectious disease will
not die out from the population. From public health policies, backward bifurcation is the
worth think that can happen.

Based on that observations, a natural question that concerns the modelling of Predator-
Prey dynamics experiencing infectious disease is : what is the incidence of disease-
induced death in the outcomes of the model ? Despite the fact that there exist several study
on Predator-Prey modelling in presence of infectious disease, this particular question has
been scarcely addressed. Therefore, this paper aims to give an answer to that question at
least for the particular case of the Leslie-Gower Predator-Prey model that has been widely
study in the literature ([10] and references therein). For the authors knowledge, this paper
is the first that addresses the question of taking into account or not disease-induced death
in eco-epidemiological models.

2. The model formulation
Following ([6], [7]), the Leslie-Gower Predator-Prey model is given by

H(t) = (ri — a1 P(t) — b H))H(t),  P(t) = (7‘2 —as Zg) P(t), 0]
H()>0, P(0)>0

where H denotes the Prey population, P the Predator population, 7; the intrinsic growth
rate of the Preys, 75 is the intrinsic growth rate of the Predators, a; is the predation rate

. . T1 . . . . Ty .
per unit of time, K = b_l is the carrying capacity of the Prey’s environment and 2 His

a
the "carrying capacity" olf the Predator’s environment which is proportional to the ngmber
of Prey.

The major objective here is to combine the preceding model (1) and an epidemiologi-
cal SIS compartmental model, in order to analyze the influence of SIS infectious disease
in a Predator-Prey community. The following hypothesis hold true in our model
(H1) The disease transmission follows the mass action law.
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(H2) There is a disease-induced death for infectious populations.

(H3) The infected population do not become immune.

(H4) It is assumed that Predator cannot distinguish the infectious and healthy Preys.
(HS) We assume that only susceptible Preys are capable of reproducing.

Note that assumptions (H3)-(H5) was already described in [10]. Recall that irrespective
to [10] our model acknowledges a major mechanism of infectious disease dynamic : the
disease-induced death of infectious individuals.

3. Mathematical analysis

We start this study by recalling some meaningful results of model (1). The following
results hold for system (1).

Theorem 3.1 1) The nonnegative orthant Ri is positively invariant by system (1).

2)Lete >0, theset D =< (H,P):0< H<K+e0<P< Z—E(K—i—s)} is
a feasible region for system (1).

3) System (1) don’t admit periodic solutions.

4) The predator-free equilibrium E; = 2—1, 0] = (K,0) is a saddle point with
stability for Prey population and instability for Predator population.

r1a2 rire
aira + agb1’ a1ra + bras

5) The coexistence equilibrium Ey = (H*, P*) = (
is globally asymptotically stable (GAS).
Proof 3.1 See Appendix A.

Now we reach the step of the formulation and the study of the eco-epidemiological
Predator-Prey model. For this purpose, let the variables S and I denote respectively the
susceptible and infectious in Prey population. We further assume a density-dependent
demographic mechanisms (birth and death) for Preys ([2]). Specifically, the parameter
0 < @ < 1 is such that b — % is the birth rate coefficient, 1 + w is the mor-
tality rate, 1 = b — p is the intrinsic growth rate of Preys. The restricted growth in the
logistic equation is due to a density-dependent death rate when 6 = 0, is due to a density-
dependent birth rate when 6 = 1, and is due to a combination of these when 0 < 6 < 1.
o denotes the recovery rate of infectious Preys. A is the adequate contact rate between
susceptibles and infectious in Prey that leads to disease transmission while d denotes the
disease-induced death rate.

Based on these biological premise together with assumptions (H1)-(H6), the Leslie-Gower
Predator-Prey model when the disease is present in Preys reads as

.

H = r1(1—% H —a PH —dlI,

S = (b - rﬁ)%) H — [,u, + W] S —ASI+ o0l —a1SP,

) _ [2]
i = )\SI—O‘I—li,u-l-%]f—alIP—dI,

. P

P = <r2 — “27) P,
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Using the fact that H = S + I, (2) is reduced to

: H
H = n (1—E)H—a1PH—dI,
. _ (1 — 9)7’1H
I = \NH-DI-ol [u S I-alP—dl,
: P
P = (ra— %) P,
H(O) > 0, I(0)>0, P(0)>0.

Using a similar reasoning as in Theorem 3.1, the following results hold for system (3).

Lemma 3.1 1) The nonnegative orthant R'fi’_ is positively invariant by system (3).
2) Let € > 0, the set D defined as

D:{(H,I,P);0<H§K+e,ogI§H,0§Pg9(K+e)}
as

is a feasible region for system (3).

In order to analyze the impact of the disease-induced death rate on the outcomes of model
(3), in the sequel, we will distinguish to cases. First, the case where d = 0 and second,
d>0.

3.1. The eco-epidemiological model without disease-induced death

Here we start, by assuming that the infectious disease does not lead supplement deaths.
Therefore we should set d = 0 in model (3). Let

AK AH*

R: b = b
Yo+ (1=0)r % o+ pu+ (1—0)b H* + a P~

where H* and P* are given in Theorem 3.1. Setting the right hand side of model (3) equal
to zero leads the following result.

Lemma 3.2 Model (3) admits at most four equilibria :
1) The point Ey = (K,0,0). That is, both Predators and disease die out.

1
2) When R1>1, the point Fly = (K, K <1 - R_) ,0) is ecologically meaning-
1

ful. In other words, Predators die out but disease persists in Preys.
3) The point E5 = (H*,0, P*). There is a coexistence between Preys and Preda-
tors while disease dies out.

1
4) When Q1 > 1, the endemic point E, = (H*, I., P*) with I. = H* <1 - Q_>
1

is ecologically meaningful.

Now we turn to investigate asymptotic stability results of equilibria of system (3). We
first investigate local stability properties and further characterize their global asymptotic
stability properties. To address local stability properties, we will compute jacobian matrix
of system (3) at any of its equilibria. Recall that an equilibrium is locally asymptotically
stable (LAS) whenever its jacobian matrix has eigenvalues with real part lying in negative
real axis.
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Theorem 3.2 The following result holds for system (3).
1) Both Ey and FE5 are unstable.
2)If Q1 < 1then Es5 is LAS.
3) Assume that the endemic equilibrium Ey exists, that is, Q1 > 1 then it is LAS.

Proof 3.2 See Appendix B.

Remark 3.1 At this step, it is not possible to conclude about what are the outcomes of
model (3) when the threshold Q1 take the critical value 1. This issue will be addressed
in the next result. Moreover, Q1 can be seen as the basic reproduction number of Preys
when Predators are present while R can be seen as the basic reproduction number of
Preys in absence of Predator. Recall that the basic reproduction number is the number
of secondary infectious individuals that can be generated by an infectious individual, all
over it infectious time, when he is in a population of susceptible individuals.

We also derive the following result

Theorem 3.3 1) If Q1 < 1 then Es5 is globally asymptotically stable (GAS).
2) Assume that the endemic equilibrium Ey exists, that is, Q1 > 1 then it is GAS.

Proof 3.3 See Appendix C.

At this step, we have characterized, from a qualitative point of view, the outcomes of
model (3) when there is no disease-induced death. In the next section, we will carry out a
similar study in order to obtain elements to characterize the impact of the disease-induced
death in the Leslie-Gower Predator-Prey model with disease in Preys.

3.2. The eco-epidemiological model with disease-induced death

This section is devoted to the study of model (3) with d > 0. As the starting point, we
computed its equilibria. To achieve that objective, we set the right hand side of system (3)
)\(dblaz + 7“17‘2(11)

bid(aire + (1 — 0)azby)
Lemma 3.3 Model (3) admits at most four equilibria :
1) The point e; = (K, 0,0). Both Predators and disease die out.
2) Assume Ry > 1 and let 0 < H < K the positive solution of

—b AH? + H\(r1 —d) +dby(1 —6)) +d(oc+p+d) =0. [4]

equal to zero. Let Ry = . The following result is valid.

NH
o4+p+(1—-0)bH+d

S 1

(H, H (1 — Q_> ,0> is a meaningful equilibrium. In other words, Predators die out
2

but disease persists in Preys.

Let also Qs = . Therefore, if Qo > 1 then the point e =

3) The point e = (H*,0, P*). There is a coexistence between Preys and Preda-
tors while disease dies out.

4) Suppose that Ry > 1 and let 0 < H < K the positive solution of

a172 air2

) H>+H </\(r1 —d) +dby(1—0) + dE) +d(o+p+d) = 0. [5]

—-A <b1 +

az
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AHT
o+p+(1—-0)btHt +d+a Pt
1
1 then the point ¢4 = (HT, ot (1 — Q_> , PT> is a meaningful equilibrium. It denotes

3
the endemicity of the disease in Preys coexisting with Predators.

Let also PT = Z—QHT and Q3 = Therefore, if Q3 >
2

Remark 3.2 We stress the fact that in Lemma 3.3, assumptions R1 > 1 and Ro > 1 are
necessary and sufficient to have the positive solution of (4) and (5), respectively, in the
feasible domain. That is, lower than K.

At this step, a first observation that can be made while comparing model (3) without and
with disease-induced death is the complexity of computations of equilibria in the latter
case.

Now we reach the step of characterizing the stability property of various equilibria. As
previously (see Theorem 3.2), we will achieve that goal by characterizing the real parts of
eigenvalues of the jacobian matrices computed at any of these equilibria. The following
results address that issue. Theorem 3.4 is obtained similarly as Theorem 3.2, so we omit
the proof.

Theorem 3.4 The following result holds for system (3).
1) Both ey and eo are unstable.

AH*
2) Let Q% =
) Let O = e T A= O+ dta P

Af Q3 < 1then esis LAS.
The next result addresses the asymptotic stability of the endemic equilibrium.

1
Theorem 3.5 Assume that the endemic equilibrium ey = (HT, Ht <1 — Q_> R PT>
3
exists, that is Ry > 1 and Q3 > 1. Then is LAS.

Proof 3.4 See Appendix D.

Remark 3.3 From a qualitative point of view, one can conclude that irrespective of epi-
demiological models ([1], [3]), the Leslie-Gower Predator-Prey model experiencing in-
fectious disease in Preys present similar results without and with disease-induced death.
We observe in this study that the disease-induced death only leads more complexity in
terms of analytical treatments of the model.

4. Numerical simulations

In this section, we provide numerical simulations using an implicit nonstandard al-
gorithm (see [10]) to illustrate and validate analytical results obtained in the previous
sections. Indeed, as mentioned in [10], standard numerical methods (Euler, Runge Kutta
methods, etc.) included in software package such as Scilab and Matlab sometimes present
spurious behaviors which are not in adequacy with the continuous system properties that
they aim to approximate i.e., lead to negative solutions, exhibit numerical instabilities, or
even converge to the wrong equilibrium for certain values of the time discretization or
the model parameters ([10]). Moreover, parameter values have been chosen in such a way



Proceedings of CARI 2016 389

that they obey the conditions for stability or bifurcation. For our numerical treatments, we
consider parameter values summarized in Table 1.

Tableau 1. Parameter values for the Leslie-Gower predator-prey models

| Parameter | Value | Reference |

1 1 Sharma et al. (2015) [8]
T 0.2 | Sharmaetal. (2015) [8]
ay 0.1 | Tewaetal. (2012)[9]
as 0.4 | Sharma et al. (2015) [8]
by 0.01 | Assumed

o 0.1 Assumed

I 0.2 | Assumed

0 0.8 | Tewaetal. (2012)[9]

Figure 1 illustrates the coexistence of Preys and Predators in the disease-free case.

Phase diagram of the Leslie-Gower model without disease

T T T A d

Predators

>

T 1
10 16.6667 20 30 70
Preys

Figure 1. Predators and Preys coexist in the disease-free case.

When there is no disease-induced death and as we saw in Theorem 3.3, page 5, the
threshold Q; captures the whole dynamic of model 3. We illustrate it in figure 2.

(a): disease dies out (b): disease persits
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Figure 2. Disease dies out (Q1<1) or persists (Q1 > 1). In panel (a), A\ = 0.006, d = 0, in
panel (b), A\ = 0.2, d = 0. The rest of parameter values in Table 1.
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5. Conclusion

In this paper we carry out the study of a Leslie-Gower Predator-prey model expe-
riencing an infectious disease only in Preys. We distinguished the cases where the model
acknowledges or not a disease-induced death. Our qualitative analysis have highlighted
several thresholds that summarize the whole dynamics of the model. We further compute
conditions, involving afore-mentioned thresholds, under which the infectious disease will
disappear or will become endemic in the community. Moreover, we can also conclude
that, from a qualitative point of view, disease-induced death has not incidence in the out-
comes of the model, irrespective of epidemiological finding ([1], [3]). However, this fin-
ding should be improved by the study of several other eco-epidemiological models. At
this step, we just have a first indication, a first study and it remains to be validated by se-
veral others works. This paper just gives an insight concerning the question of taking into
account or not disease-induced death in eco-epidemiological models. We finally illustrate
our theoretical results with relevant numerical simulations.
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A. Proof of Theorem 3.1

From system (1), one has for all t > 0,

H{t) = H(0)exp < / C(r — anP(s) — b () ds) >0

0 0 P(s) [6]
P(t) = P(0)exp ( /0 (7"2 - ;[ o >ds> > 0.

Therefore, part 1 holds.

To prove part 2 we need to establish that the set D is a positively invariant and absor-
bing set. Let ([0,7'), X = (H, P)) be the maximal solution of the Cauchy problem (1)
with 0 < T < +o0. Let t; € [0, 7). It suffices to show that

—if H(t;) < K then forallt € [t,,T), H(t) < K
~if P(t;) < 2K thenforall t € [t1,T), P(t) < 2K
a a2

since we have already shown that solutions are nonnegative. Assume that ¢; > 0 exists
such that H(t; +¢e1) > K. Lett; = inf{t > t;|H(t) > K}. Since H(t;) = K, then
H(t) = K + H'(t7)(t — 1) + o(t — 1)t . Moreover, from the first equation of (1),
H'(t}) = —a1P(t7)K < 0. Then there exists £ > 0 such that V¢ < ¢ < t] 4+ &,
H(t) < K which is a contradiction. As a result, V¢t € [0,T), H(t) < K. Similarly one
can prove that if P(t¢1) < "2 K then forall t € [t1,T), P(t) < 2k,
a9 a
Now we reach the step that aims to show that the set D is an absorbing set. From the first

. H
equation of system (1) one has H(t) < r (1 — E) H which implies that

H(t) <u(t)—» K as t— +o0,

where v is the unique solution of & = ry (1 - %) u with w(0) = H(0). Hence for
alle > 0,377 > 0/H(t) < K + ¢, ¥Vt > Ty. Similarly, from the second equation

. P
of system (1) one has V¢ > T3y, P(t) < ro (1 — %) P which also implies

T . . . .
that P(t) < v(t) — —2(K +¢) as t — 400, where v is the unique solution of v =
as

o <1 - ﬁ) v with v(0) = P(0). Thus there exists 375 > 0/P(t) < %(K +

€). These end the proof of part 2.
1
To prove part 3, one uses the Dulac function B(H, P) = TP Since —r; < 0 and

ro > 0 are the eigenvalues of the jacobian matrix of system (1) at F, it follows that £y
is a saddle point. Finally, to prove part 5 one can use the Lyapunov function proposed by
Korobeinikov (see [5]).

B. Proof of Theorem 3.2

Since 72 > 0 is an eigenvalue of the jacobian matrices of system (3) at £} and Eb, it
therefore follows that both £ and E are unstable.

Since the variable I does not appear in the first and the third equation of system (3)
and together we Lemma 3.1 it suffices to compute the eigenvalue of the jacobian matrices
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of both 5 and I in the /-direction. A direct computation leads that the eigenvalue of

the jacobian matrix at E3 is g, 1 = AH™ | 1 — Q_> while at Ey itis ng, 1 = —Ale.
1

Therefore, £3 is LAS whenever Q1 < 1 while £, when it exists, i.e. I, > 0, it is LAS.

This ends the proof.

C. Proof of Theorem 3.3

Since system (3) is dissipative, that is, its solutions are bounded (see the feasible region

D) then one can apply results on triangular systems (see Corollary 4 in [4]). Following

Theorem 3.1, we deduce that , ligrn (H,P)(t) = (H*, P*). Therefore, the limiting equa-
[— 100

. 1
tion of variable [ is I = <)\H 11— Q_ — Al ) I. Finally, it follows that if @; < 1

1
then I — 0 and E3 is GAS. Similarly, if @1 > 1 then I — I. and E, is GAS. This
completes the proof.

D. Proof of Theorem 3.5
1

Since the endemic equilibrium e4 = (H Al (1 - Q_> ,PT> exists, that is Ry >
3
1 and Q3 > 1, one has

d—\HT <0. (7]

For simplicity, in the sequel we note H (resp. I, P) instead of HT (resp. I, Pt). Moreo-
1

Ver, let A1 = —blH +d (1 — Q_> ;A2 = —d' A3 = —alH;A4 = ()\ — (1 — 0)1)1)],
3

A = —/\I A6 = —(11] A7 = T—Q Ag = —Ta. CO A1A5A8+A7A2A6—A7A3A5—

AyAgAg; Cr = —A1As + A4A2 — A1 Ag — A5 Ag+ A7 A3 Cy = Ay + As + Ag. Follo-
wing Routh-Hurvitz theorem, the endemic equilibrium e, is LAS whenever Cy < 0 and
Cy < 0and C1Cy + Cy > 0. Straightforward computations lead Co = —by + (d —

AH) <1 . Q%) <0;Co= 1 (AbIIH + W) + ZayI(d— A\H) < 0;
C1Cy + Cp = (—blH + (d— \H) (1 - QL)) (—d(l —0)biT — Aoy TH — ML
—robyH + 1o (d — NH) (1 - QL)) + 2 (arby H?)

—rz (—arHZ 4y (< H + (- M) (1-4)))
> 0.
[8]

Thus, when the endemic equilibrium, ey, exists, it is LAS.



