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RESUME. Dans ce travail, on s'intéresse a lidentification d’'un coefficient de Robin sur une partie
non accessible du bord d’'un domaine a partir de données faiblement surdéterminées sur la partie
accessible. Le modéle est régi par les équations de Stokes. Dans un premier temps, nous utilisons
une méthode du type décomposition de domaine pour calculer les composantes inconnues de la
vitesse et du tenseur des contraintes, puis nous utilisons ces données pour calculer le coefficient
recherché. Nous donnons des tests numériques pour valider la méthode utilisée.

ABSTRACT. In this paper, we deal with the inverse problem of identifying a Robin coefficient on
some inaccessible part of a boundary of a domain from the knowledge of partially overdetermined
data on the accessible part. The underlying PDE’s system is the Stokes one. We use a domain
decomposition-like method to first recover lacking velocity and stress tensor component. Numerical
trials highlights the efficiency of the proposed method.
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1. Introduction

Consider an incompressible and homogeneous fluid flow governed by Stokes equa-
tions into an open bounded and connected domain £ C R2. The boundary I' = 952 is
composed of two parts I'. and I'; having non-vanishing measure and such that I'. N T'; is
empty. I'. is the accessible part, I'; is the non accessible one. We formulate our problem

as follows :
—vAu+Vp =0 in  Q
V-u =0 in Q
®)q (o(u)-n)-7 =g on T, (1)
u-n =®.-n on I,
olu)-n+Ru =0 on Ty

v is the viscosity of the fluid that we will assume equal to 1, o denotes the stress ten-
sor o(u) = o(u,p) = 2vD(u) — pI, where D(u) is the strain tensor defined by :
D(u) = 3(Vu + VuT). n is the outward normal on 92 and 7 is the tangential vec-
tor of 0. R is the Robin coefficient assumed hereafter to be a positive number.

We want to determine the coefficient R from the knowledge of u.7 on I'..

The method followed here to recover R lies on the recovery of the velocity and the normal
stress on the non accessible part T';.

Notice that the boundary condition on the I'.. is not the Neumann condition regarding the
Stokes operator. Thus, this is a non-trivial situation since on the accessible boundary the
information on the normal component of the normal stress is unavailable, and only par-
tially overspecified data are given. Nonetheless, this condition is natural, one may refer to
[1, 2], for instance, for the description and the background on this boundary condition.
The Cauchy problem is known since Hadamard to be ill posed in the sense that if a solu-
tion exists, it does not depend continuously on the data (®.., g.). Thus, the lack of com-
plete data on the accessible boundary I'. may increase the degree of the ill-posedness, and
numerically worst behavior is expected.

Our work is motivated first by the study of airway resistance in pneumology which cha-
racterizes the patient’s ventilation capability and second by the study of the resistivity of
a stent which is a medical device used to prevent rupture of aneurysms [3, 4].

The problem of identifying Robin coefficient has been studied by Chaabane and Jaoua [5]
for Laplace equations and by Boulakia, Egloffe and Grandmont [6] for Stokes problem
where they consider the full overdetermined problem namely the velocity and the hole
stress tensor on I'..

In our case the difficulty is increased as long as the overdetermined data are incomplete.
Contrary to the case considered in [6], there is no unique continuation results helping us
to prove identifiability results. Neverthless, the authors have studied in [7] the problem of
recovering the velocity and the stress tensor on the inaccessible part of the boundary from
these incomplete data on the accessible part and made a full study which will be of great
help for the present work.
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2. Recovering lacking data

Giving a compatible data (P, g.) € (H% (T.))? x H-3 (T'c), that is a data for which
a solution (u, p) exists for the problem :

—vAu+Vp=0 in €
V-u=0 in  Q

(PT) u= P, on I, @
o(u)-n)-1=g. on I,

we want to determine the velocity ®; together with G; = o(u;) - » on the non accessible
part I';.

Assume that ®; and G; are recovered, we will have therefore the following partially over-
determined boundary conditions system :

—vAu+Vp=0 in Q
V-u=0 in Q 3)
u= ., (o(u)-n)-7=g. on T,
u=®;, ou)-n=G; on I}

In order to solve this problem, we will use a (fictious) domain decompostion-like method
[8, 9] which consists on splitting the problem (3) into two direct and well-posed problems
using only one dataon I...

Thus, let (u}), p})) and (uj, px) be respectively the solution of the following Dirichlet
and Neumann problems :

A P .
—vAup+Vpy =0 in Q vAuy +va])\\’ _g ig 8
V-uh =0 in Q N
(®p) =0 8 el ) =g on T
p —1° on I‘(-: uy-n =®.-n on T,
YD = ’ uf‘\, =\ on I

A solution of the problem (2) is recovered if and only if the solutions of the well-posed
above problems coincide. The proposed data-recovering problem therefore amounts to
minimizing the gap between 17, and Y.

Following the study done in [10, 11], we define the cost function IZ which could be inter-
preted as an energy-type error functional. E is defined as follows :

EO) = 2 / ol — k) : Vi — ) 4

We have proved in [7] the following proposition :



396 Proceedings of CARI 2016

Proposition 1

1. E is a positive quadratic and convex functional on (H 3 (T3))%

2. For a compatible pair (., g.), the solution (®;,G;) of the partially overdetermined
boundary value problem (2) is obtained by the following

(I)i = u)bmm Ti» Gl = (U(u?\\fmm) : n)|rz

where \p,ip is the solution of the following minimization problem :

Amin = arg  min E(\) (5)
AE(H (T))?

2.1. Minimization procedure

We next prove the following result :

Proposition 2
For a compatible pair (¥, g..), the minimum of E is reached when :

o(up)-n =o(uy) n only (6)
Proof :
We derive the first optimality condition. It’s easy to prove that for h € (Hz(T;))2, we
have :

oFE 1 [/
T =3 | ol =) b =)

where (r?), s%) and (1%, s%;) are respectively the solutions of :

_ h h = i
—vArh Vsl =0 in  Q VATN Jrvvffzv _ 8 in g
b = i b=
\v4 rﬁ’ 0 in ’ (o(rh)-n) -7 = on I'. (7)
rHh = on Fc h _
b =0 = rhoon = on I,
D . on i r?v =h on T

Green Formula gives :

0 =5 [ b=y on)rb =g [ (orh) o) (b~

since we have )y = 0 onT'. and u3, — uj3 = 0 on Ty, then :

g—f(h) = % /FZ (0(11,>[‘, —uy) - n) i — %/C (U(r?\,) “n) (u — un)
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using the boundary condition on (u}, —u7) - n and on (o (7% ) - n) - 7, we conclude that :

G =3 [ (et =ud)-m)n v e ()

thus our statement follows immediately.

2.2. The interfacial operators

Following the classical framework of the Domain Decomposition Community, we
introduce the notations :

{ (up,pp) = (up,Pp) + (rp, 5p)
(un,px) = (Ul PY) + (riy, %)
thus, the condition (6) can be written as :
o(rh) -n—o(ry) -n=—[o(ub) n—olul) n]
or equivalently by using operator’s modelling
S\ =T
with
T =—[o(ud)-n—o@l) ]

and S = Sp — Sy is the Steklov-Poincaré operator defined by :
S(A) = Sp(A) = Sn(N)

and where
Sp . HY2(T;)* — H Y¥I;)? Sy HYAT;)? — H V2)? ®)
A — cr(r%,)-n ’ A — o(rﬁv)-n

2.3. Reconstruction of Robin coefficient

From the last equation in (1), we can now determine the value of the real parameter R
using the means of the recovered values of u and o(u).n on I';. More precisely, we use
the formula :

Jr lo(un)nli + [ [o(un).n]2
Jr, flun]i + [ fun]e
where for a vector u of R?, [u];, denotes the k" component of .

We have not deal in the present work with the case of a spatially dependent R which will
be treated later on.

|R| = 9)
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3. Numerical Results
We use a numerical procedure based on the preconditioned gradient algorithm :
Xk-i—l = Xk — mP[S(Xk) - T]

where P is a preconditioning operator and m is a relaxation parameter. The expressions
of S and 7" are described in the previous section.

3.1. Algorithm

1) Initialization : For £ = 0 choose A\g = 0
2) Solve (Pp) and (P ) whith A = Ag.

3) Compute wy, solution of the following "interface" problem :

—vAwp +Vp, =0 in
V-w, =0 in
(Pr) wp =0 on T, (10)
o(wp) - n = (ouh) n—o(f) n) on T;
4) Update A :

Aet1 = Ak + mwg

5) Stopping Criteria : E(\) < &, where ¢ is the tolerance (selected numerically).
6) Calculate R using formula (9)

3.2. Results and Discussions

We will test our method for two cases corresponding to different choices of the domain
Q. The first choice corresponds to an annular domain and the second to a rectangular one.
The overdetermined data are generated from the following test examples given by [12, 9]
and refered to by smooth and singular data respectively :

u(z,y) = (4y® — 2%, 42° + 22y — 1), pla,y) = 2Aay — 20

1 1 (z—a)® y(z—a)
u(w,y) = ir <log V(@—a)2+y? + (x—a)2+y?> (,L.U_a)z_,_yz) ’
z—a

P(TY) = 5r e

For each case and for different test values of R, we will compare the components of the
velocity and those of the normal stress tensor for the analytical solution teyqct, 4 p and uy
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on I';. Then we will reconstruct on I, the unkown values (o (up) - n) -n, (o(un) -n)-n
and compare them with (o (Uezact) - 1) - n.

Moreover, we will compare on I'; the normal stress of up and uy with the limit condition
Rucract.

Finally, we will reconstruct the value of the Robin coefficient that we will call p and com-
pare it with the exact used value R.

Computations are done under Freefem++ Software environment.

First example : Let Q) be the annular domain with radius R; = 1 and Ry = 2. T, will
be the outer circle and I'; the inner one. we mesh with 150 nodes on I'. and 100 nodes on
[;. e = 6 x 10~ (80 iterations were required).

The reconstructed stress tensor on I'; from up and uy are compared with the one from
the exact solution (figure 1). We give the result for R = 20 but the numerical tests are
done for several values of R and the results are satisfying.

In table 1 where we compare the exact value of the Robin coefficient R with the identified
one by our method p, we note that the error rate is interesting it varies between 0.5% and
8.9%.

Second example : In this case, {2 is a rectangular domain with L = 2 and ¢ = 1.
00 =T.UT; UTy, where T, = [0,2] x {1}, T; = [0,2] x {0}, Ty = ({0} x
[0,1)) U ({2} x [0,1]). We mesh with 60 nodes on I and I';, and with 50 nodes on Iy .
£ = 3 x 1073 (50 iterations were required).

In figure 2 we plot the lacking component of the normal stress on I'. (left) and com-
pare the normal stress with Ru,,qc: on I'; (right). Note that these reconstructed fields are
in close agreement with the exact ones. We test for several values of R.

In table 2 we reconstruct the value of the Robin coefficient p and compare it with the
exact one R. The error rate is varing between 1.2% and 7%.

In order to test the robustness of the used method, we introduce a white noise pertur-
bation to the data with an amplitude ranging from 1 to 15%. We reconstruct the velocity
and the stress tensor on I'; from these noisy data. We observe in figure3 that the method
used is more robust with smooth data (left) than with singular one (right).



400

velocity

Figure 1.

Tableau 1. First example : Comparaison of p and R

First component of normal stresses, R=-20

Exact
Dirichlet
Neumann

velocity

First example with smooth data, R=20

Second component of normal stresses, R=-20
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: the reconstructed stress tensoronT';
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Figure 2. Second example with smooth data, R=100 : the reconstructed data on I (left)
and comparing normal stress with Rucyzact 0n T (right)

Tableau 2. Comparaison of p and R : Rectangular domain

| R |

2

5

10

20

5

0 | 100 |

| p | 2.05149 | 4.93797 | 9.63617 | 18.8812 | 46.4296 | 92.9558 |
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Figure 3. Comparaison of velocity’s first component for noisy data : Smooth data(left),
Singular data with a=0.8 (right)
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