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ABSTRACT. Drug treatment, snail control, cercariae control, improved sanitation and health edu-
cation are the effective strategies which are used to control the schistosomiasis. In this paper, we
consider a deterministic model for schistosomiasis transmission dynamics in order to explore the role
of the several control strategies. The global stability of a schistosomiasis infection model that involves
mating structure including male schistosomes, female schistosomes, paired schistosomes and snails
is studied by constructing appropriate Lyapunov functions. We derive the basic reproduction number
Ry for the deterministic model, and establish that the global dynamics are completely determined by
the values of Ry. We show that the disease can be eradicated when R < 1; otherwise, the system
is persistent when Ry > 1.

RESUME. Le traitement médicamenteus, le traitement par les molluscicides, 'amélioration de I'assai-
nissement et I'éducation sanitaire sont les stratégies efficaces qui sont utilisés pour controler la schis-
tosomiase. Dans cet article, nous considérons un modéle déterministe pour la dynamique de trans-
mission de la schistosomiase dans le but d’explorer le réle des différentes stratégies de contréle. La
stabilité globale d’'un modéle d’infection de la schistosomiase qui incorpore une structure d’appariement
et une dynamique des schistosomes males, femelles, pairs et des escargots est étudiée par la
construction de fonctions de Lyapunov appropriées. Nous calculons le taux de reproduction de base
Ro pour le modéle déterministe, et établissons que la dynamique globale est complétement détermi-
née par les valeurs de Ro. Nous montrons que la maladie peut étre éradiquée quand Rg < 1; par
ailleurs, le systéme est persistant lorsque R > 1.

KEYWORDS : Epidemic models; Nonlinear dynamical systems; Global stability; Reproduction num-
ber; Schistosomiasis.

MOTS-CLES : Modéles épidémiologiques; systémes dynamiques nonlinéaires; Stabilité globale; Taux
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1. Introduction

Schistosomiasis (also known as bilharzia, bilharziasis or snail fever) is a vector-borne
disease caused by infection of the intestinal or urinary venous system by trematode worms
of the genus Schistosoma. More than 207 million people are infected worldwide, with
an estimated 700 million people at risk in 74 endemic countries [12]. Schistosomiasis
is prevalent in tropical and subtropical areas, especially in poor communities without
access to safe drinking water and adequate sanitation. Of the 207 million people with
schistosomiasis, 85% live in Africa [12]. Of the tropical diseases, only malaria accounts
for a greater global burden than schistosomiasis [11]. Therefore, it is vital to prevent and
control the schistosomiasis transmission.

Schistosoma requires the use of two hosts to complete its life cycle: the definitive
hosts and the intermediate snail hosts. In definitive hosts, schistosoma has two distinct
sexes. Mature male and female worms pair and migrate either to the intestines or the blad-
der where eggs production occurs. One female worm may lay an average of 200 to 2, 000
eggs per day for up to twenty years. Most eggs leave the blood stream and body through
the intestines. Some of the eggs are not excreted, however, and can lodge in the tissues. It
is the presence of these eggs, rather than the worms themselves, that causes the disease.
These eggs pass in urine or feces into fresh water into miracidia which infect the interme-
diate snail hosts. In snail hosts, parasites undergo further asexual reproduction, ultimately
yielding large numbers of the second free-living stage, the cercaria. Free-swimming cer-
cariae leave the snail host and move through the aquatic or marine environment, often
using a whip-like tail, though a tremendous diversity of tail morphology is seen. Cer-
cariae are infective to the second host and turn it into single schistosoma, and infection
may occur passively (e.g., a fish consumes a cercaria) or actively (the cercaria penetrates
the fish) and terminates the life cycle of the parasite.

Many effective strategies are used in the real world, such as: based on preventive
treatment, snail control, cercariae control, improved sanitation and health education. The
WHO strategy for schistosomiasis control focuses on reducing disease through periodic,
targeted treatment with praziquantel. This involves regular treatment of all people in at-
risk groups [12]. Over the past few decades, different mathematical models [3], [5], [13],
[10] have been constructed to describe the transmission dynamics involving two-sex prob-
lems. In [3], [5], [13], a mathematical model is developed for a schistosomiasis infection
that involves pair-formation models and studied the existence, uniqueness and the stabil-
ities of exponential solutions. We note that in [5], [13] authors formulate three forms of
pair-formation functions (also known as mating functions) that are the harmonic mean
function, the geometric mean function and the minimum function. In [16], Xu et al. have
proposed a multi-strain schistosome model with mating structure. Their goal was to study
the effect of drug treatment on the maintenance of schistosome genetic diversity. How-
ever, in their model they only consider the adult parasite populations. Castillo-Chavez et
al. [3] have considered a time delay model but also do not include the snails dynamics.
But it is important to take into account the snail dynamics as it is shown in the life cycle
of schistosoma. In fact, the parasite offspring is produced directly by infected snails but
not by paired parasites as is related in [10].

Recently, Qi et al. [10] have formulated a deterministic mathematical model to study
the transmission dynamics of schistosomiasis with a linear mating function incorporating
these snail dynamics. This paper gave the expression of a threshold number (and not the
basic reproduction number) with a local stability analysis of the disease free equilibrium.
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However, no work has been done to investigate the global stability of the equilibria
which is more in interest. Here, we take this deterministic schistosomiasis model with
mating structure [10] and we propose a complete mathematical analysis. A stability anal-
ysis is provided to study the epidemiological consequences of control strategies. We
compute the basic reproduction number and we show that when it is less or equal to one
then the disease free equilibrium (DFE) is the unique equilibrium of the system and it is
globally asymptotically stable, while when the basic reproduction number is greater than
one we show that the disease persists. This paper is organized as follows. Model formula-
tion is carried out and the basic properties are shown in the next section. In Section 3, we
determine the basic reproductive number Ry of the model and also establish global sta-
bility of the disease-free equilibrium. In the end of this section we show that the disease
is uniformly persistent when 7%y > 1. A general conclusion is given in the last section.

2. Mathematical Model

The model that we consider has been presented in [10]. It describes the time evolution
of a population divided in three parasites sub-populations and two intermediate snail host
sub-populations. The state variables of the model are:

— X, (t) the male schistosoma population size.

— X¢(t) the female schistosoma population size.

— X, (t) the pair schistosoma population size.

— X,(t) the susceptible (uninfected) snail host population size.
— X, (t) the infected snail host population size.

The time evolution of the different populations is governed by the following system
of equations:
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The different parameters are:

—k,;, and ky are the recruitment rates of male schistosoma and female schistosoma
respectively. o is the disease-induced death rate of snail hosts.

— Wms Hf, Up, and p, denote the natural death rate for male, female, pair and snail
hosts respectively.

— p represents the effective mating rate.

— A is the recruitment rate of snail hosts.

— [ is the transmission rate from pairs parasite to susceptible snails.

— €m., €f, €p and €, are the elimination rates of male shistosoma, female schistosoma,
paired schistosoma and snails respectively. These elimination rates represent the control

strategies.
As it has been done in [10], we shall denote
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M’m,"’em:ﬂm,e: /1/f+€f:,uff€a
Hp + €p = Mpe, s + €5 = [hse-

2.1. Basic Properties

In this section, we give some basic results concerning solutions of system (1) that will
be subsequently used in the proofs of the stability results.

Proposition 2.1. The set T’ = {M,. > F,. > 0, Ps. >0, Sg, > 0, I, > 0} isa
positively invariant set for system (1).

Proof. The vector field given by the right-hand side of system (1) points inward on the
boundary of Ri_. For example, if X = 0, then, X; = A > 0. In an analogous manner,
the same can be shown for the other system components. O

Proposition 2.2. All solutions of system (1) are forward bounded.

Proof. Let us define Ny = X,, + Xy 4+ X}, and Ny = X, + X,. Using system (1), we
dNy A )

S€

have

= A— pse Ny — g X; < A— pige Ny . This implies that the set { Ny <

is positively invariant and attracts all the solutions of (1).
‘We also have:

dNx
7 = (k'm + k'f) Xi — tme Xpm — (.U‘fe + P) Xf — Hpe Xp
A .
< (km + kf) s - mln{ﬂméaﬂf&vﬂpe} Nx — pr~
ko + ko)A . ..
Hence, the set {NX < u}, where v = min{ e, fife, fipe}. is positively
Mse Y

invariant set and attracts all the solutions of (1). Od

Therefore all feasible solutions of system (1) enter the region

A
Q= {(Xm,xf,xp,xs,xi) ER®: X, + X; < o

X+ X5+ X, < —(k’"Jrkf)A},

Mse Y

and the set (2 is a compact positively invariant set for system (1). It is then sufficient to
consider solutions in €2.

3. The basic reproduction number and the disease-free
Equilibrium
A
The disease-free equilibrium of system (1) is £° = (0,0,0, X?2,0) = ( 0,0,0, M—,O).

S€
Using the notations of [15] for the model system (1), the matrices F' and V for the new
infection terms and the remaining transfer terms are, respectively, given by
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0 0 0 0 _km ,u'me p 0
0000 0 p+ 0 -k
F=|00 0 0 and V= P Hye f
A 0 —p  Ipe 0
0 0 'u 0 0 0 Hse + Qs

The basic reproduction number R is equal to the spectral radius of the matrix F' V!,
a simple computation gives:
_ Bpks A _ Bpks X?

tse bpe (Hfe +p) (Hse +s)  ppe (Hfe +p) (Hse + as)

Ro

One can remark that there is a mistake in the formula for R provided in [10].

The basic reproductive number for system (1) measures the average number of new
infections generated by a single infected individual in a completely susceptible popula-
tion.

As it is well known (see, for instance, [15]), the local asymptotic stability of the
disease-free equilibrium is completely determined by the value of Ry compared to unity,
i.e., The disease-free equilibrium £Y of the system (1) is locally asymptotically stable if
Ro < 1 and unstable if Ry > 1.

Hence R determines whether the disease will be prevalent in the given population or
will go extinct.

Next, we discuss the global stability of infection-free equilibrium by using suitable
Lyapunov function and LaSalle invariance principle for system (1). In recent years, the
method of Lyapunov functions has been a popular technique to study global properties of
population models. However, it is often difficult to construct suitable Lyapunov functions.

Theorem 3.1. The disease-free equilibrium E° of system (1) is globally asymptotically
stable (GAS) on the nonnegative orthant Ri whenever Rg < 1.

Proof. See Appendix A. O

Biologically speaking, Theorem 3.1 implies that schistosomiasis may be eliminated
from the community if Rg < 1. One can remark that Ry does not depend on i, =
tm + €. Hence it is not helpful to try to control the the male schistosoma population
and then one can take €, = 0. Therefore the only way to eliminate schistosomiasis is to
increase the killing rates of female schistosoma (ey), paired schistosoma (€p,) and snails
(e5) in order to have Ry < 1.

In the rest of this section, we show that the disease persists when Ry > 1. The disease
is endemic if the infected fraction of the population persists above a certain positive level.
The endemicity of a disease can be well captured and analyzed through the notion of
uniform persistence. System (1) is said to be uniformly persistent in €2 if there exists

constant ¢ > 0, independent of initial conditions in (02 (the interior of €2), such that all
solutions (X, (t), X¢(t), Xp(¢), Xs(t), Xs(t)) of system (1) satysfy

o S e lim B> e Tmi S
htlggclf Xm(t) > ¢, 11;1_1)10101f X¢(t) > ¢, th_l)loIolf Xp(t) > ¢,
liminf X (t) > ¢, liminf X;(t) > ¢,

t—r00 t—ro0

provided (X, (0), X £(0), X,(0), X,(0), X;(0)) €, (see [14], [2]).
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Theorem 3.2. System (1) is uniformly persistent in Q if and only if Rg > 1.

Proof. See Appendix B

4. Numerical simulation

In this section, we use numerical simulations to illustrate the asymptotic stability and
persistent results. Parameter values have been chosen in such a way that they are realist
and at the same time obey the conditions for stability or persistent. Figure 1 illustrates the
convergence of the dynamic of the system to the disease-free point.
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Figure 1. Solutions of the schistosomiasis model (1) with parameter values defined as
follows: ky = 100, k., = 145, A = 150, 8 = 0.000018, as = 0.5, pife = 0.3, pme = 0.1,
tpe = 0.2, p = 0.467, use = 0.9. These parameters correspond to Ro = 0.6. The initial
condition is X, = 50000, Xy = 30000, X, = 25000, X, = 4500, X; = 2500.
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Figure 2 presents how the system persists and approaches the endemic point.

Trajectories of X, X; when RO>1
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Figure 2. Solutions of the schistosomiasis model (1) with parameter values defined as
follows: ky = 100, k., = 145, A = 150, 8 = 0.000018, as = 0.5, pife = 0.2, pme = 0.1,
tpe = 0.02, p = 0.467, use = 0.1. These parameters correspond to Ro = 157.5. The initial
condition is X, = 50000, Xy = 30000, X, = 25000, X, = 4500, X; = 2500.
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5. CONCLUSION

In this paper, we have investigated the dynamical properties of a schistosomiasis
model with mating structure which incorporates some control strategies and uses the min-
imum mating function. When the basic reproductive number R is less than 1, we have
proved the global asymptotic stability of the disease free equilibrium &. When the basic
reproductive number R is greater than 1, the persistent of the endemic equilibrium &,
has been obtained.
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Appendix A. Proof of Theorem 3.1
Proof. We shall use the following notations: = = (X, X¢, Xp, X5, X;), and X2 =

A
—. To show the global stability of infection-free equilibrium of system (1), we use the
Hse
fosllowing candidate Lyapunov function:

X 0

S€ s S€e s € SXT_XS
_ Mt Xf+(“ o) (g +p)Xp+ 21 gxX, 4+ X, ()
kf kfp ~X§ X.,-

V(z)

This function satisfies: V(z) > 0 forall z € €, and V(z) = 0 if and only if z =
(X0m,0,0, X2,0).

Taking the time derivative of the function V' (defined by 2), along the solutions of
system (1), we obtain

. Xg
Vo= (1_XS>(A_,u.seXS_ﬂX.SXp)+(BXsXp_(ﬂse+as)Xi)
fhse + Qs Mse T as) (prpe +p
+ g(k’in—(ﬂfe"’P)) Xf"‘( Ly )(PXf—upeXp)
ky kyp
Using A — pi5e X0 = 0, we get
. X0
V - - = (_,U'SF Xs + Mse X?) + BXS Xp - (/LS& * QS) (:ufﬁ T p) ,U'pe Xp
XS k‘fp

XY X A
= ﬂseXg <1__S) <]___S>+’8_|:1_(/*L56+a3)(uf5+p) /’Lm€MP€:| Xp

X X7 Hse krpApB
X0 X,\  BA 1
= s X° (1 — Y) (1 — Xg> + ™ [1 — R_o] X, 3)
Hse 0 2 PA 1
= - X, — X, 1-—1 X
Xs ( s ) M Hse |: RO b

Hence, 174 <0ifRg <1,and

L [ {reQie= (X X5,0,X0, X))V if Ry < 1
sm{v_o}_{ {reQ:a=(Xp X5, X,, X0, X;)} if Rg = 1

We will show that the largest invariant set £ contained in Q N {V = 0} is reduced to the
disease-free equilibrium £°.
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Letax = (X, Xf, Xp, X, Xi) € Land x(t) = (X (), X£(2), Xp (1), Xs(2), Xi(2))
the solution of (1) issued from this point. By invariance of £, we have X,(t) = X? which
imlies X,(t) = 0= A —ps X (t) = 8 X,(t) X(t) = A—ps X0 — B X, (t) X0 and hence
X, (t) = 0 for all . But, X,,(t) = 0 implies that X, (¢) = 0 for all # which implies, using
system (1), that X ;(¢) = O for all ¢. In the same way, it can be proved that X;(t) = 0 for
all t. Reporting in the first equation of system (1), one obtains that, in £,

Xm(t) = —Mme Xm(t) vt

Thus the solution of (1) issued from © = (X, X, Xp, X5, X;) € L is given by z(t) =
(X e Hmet 0,0, X2 0) which clearly leaves €2 and hence £ for t < 0 if X, # 0.
Therefore £ = {£°} and hence £° is a globally asymptotically stable equilibrium state
for system (1) on the compact set {2 thanks to LaSalle invariance principle [7], (one can
also see [1], Theorem 3.7.11, page 346). Since the set 2 is an attractive set, the DFE is
actually GAS on the nonnegative orthant R? . O

Appendix B. Proof of Theorem 3.2

Proof. When R < 1, the infection-free equilibrium £° is globally asymptotically stable
which precludes any sort of persistence and hence Rg > 1 is a necessary condition for
persistence. In order to show that Ry > 1 is a sufficient condition for uniform persistence,
it suffices to verify conditions (1) and (2) of Theorem 4.1 in [6] (one can also see [8],
Theorem 3.5).

We use the notations of [6] with 2" = Q and # = 0f). Let M be the largest invariant
compact set in . We have already seen that M = {£°}, and so M is isolated. To
show that W# (M) (the stable set of M) is contained in % = 02, we use the following
function:
frse + Qs (se + as) (e + p)

ky ksp

The time derivative of F along the solutions of system (1) is given by

F= X;+ X, + X;

r .s€+as e+
F - BX.X, - (1 ) (1ige + p) iy X,

kip
Lse + Qs) (frre +
(o bmtsgbn, ) o
— /"Lpe (,U‘Se + Ués) (:ufﬁ + p) <5Xs kfp _ 1) Xp
kg p Hpe (Bhse + ) (,“fe +p)

Hpe (Hse + ) (.Ufe +p) X
= ——-1] X
kg p o X !

. X0 .
Since Ry > 1, we have F > 0 for X, > 0 and RS < X, < X?. Therefore ¥ > 0

0
in a neighborhood N of £ relative to 2 \ Q. This implies that any solution starting
in N must leave N at finite time and hence the stable set of M, W#(M) is contained in
onN. O
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