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RESUME. Un exemple typique de modéle compartimental de transmission avec traitement antibio-
tique et vaccination, qui peut étre étudié algébriquement est présenté. Les méthodes exactes du cal-
cul formel sont utilisées pour déterminer les quatre équilibres du systeme d’équations différentielles
ordinaires représentant le modéle et étudier leur stabilité ainsi que leurs bifurcations.

ABSTRACT. A typical example of a compartmental desease transmission model with antibiotic treat-
ment and vaccination that can be dealt with algebraically is presented. Methods from computer alge-
bra are used to find the four equilibria of the ordinary differential equations characterizing the model
and to study their stability as well as their bifurcations.
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1. Introduction

Compartmental models are a classical tool to model the spread of infectious diseases.
Such models have the important feature of being simple enough to allow effective com-
putation but also sufficiently flexible to take into account several behaviors of infectious
diseases such as latency, the effect of treatment as well as vaccination [1]. Usually, com-
partmental models lead to systems of ordinary differential equations (ODE) depending
on parameters having a disease free equilibrium Ej characterized by the absence of di-
sease in the population. The most fundamental question is then to find conditions on the
parameters so that the disease free equilibrium is globally (or at least locally) asymptoti-
cally stable. Many compartmental models have the following behavior : the disease free
equilibrium is asymptotically stable if and only if a threshold quantity depending on the
parameters, called the basic reproduction number and denoted Ry, is < 1. When Ry = 1 a
new equilibrium E; called the endemic equilibrium appears and exchanges stability with
the disease free equilibrium through a transcritical bifurcation so that, when Ry > 1, the
equilibrium F; is asymptotically stable while Ey is unstable. Such a behavior no longer
holds when for example the pathogen agent responsible of the disease transmission has
several strains.

In this paper we introduce and study a compartmental model of an infectious disease
caused by a two-strain bacterial pathogen. We show how to use methods from real alge-
braic geometry [6] and computer algebra [5] to find all the equilibria of the ODE system
describing the model and to study their stability as well as their bifurcations.

The paper is structured as follows. In Section 2 we present the details of the model.
In Section 3 we compute the equilibria of the model by using Groebner bases theory [5].
The stability of these equilibria is then studied in Section 4. A relation between our study
and the effective reproduction number is given in Appendix A. We also give details on the
bifurcations of the equilibria in Appendix C and a simulation of the vaccination effect in
Appendix D.

2. Presentation of the model

The model concerns a host population, a part of its individuals are under antibiotic
(Ab) treatment against a two-strain bacterial pathogen. Individuals who are not under Ab
treatment can be colonized by an antibiotic-susceptible (Ab-S) strain or by an antibiotic-
resistant (Ab-R) strain of a bacterial pathogen, but not by both at the same time (i.e., there
is a maximal competition between the two strains), while those under antibiotic treatment
can only be colonized by the Ab-R strain. We assume there is a fitness cost for resistance
such that the Ab-R strain is somewhat less transmissible than the Ab-S strain.

The host population is divided into seven compartments representing the fractions of
the population in each state. There are four states representing individuals not under Ab
treatment, namely susceptible individuals (.S), colonized individuals by the Ab-S strain
(I1), colonized individuals by the Ab-R strain (/2) and vaccinated individuals (V). The
individuals in V' are assumed to have a temporary complete immunity to infection by
both strains. There are three states for individuals under Ab treatment, namely susceptible
individuals (T"), colonized individuals by the Ab-R strain (7%) and vaccinated individuals
who are currently under Ab treatment (V). As well as individuals in V, those in Vi are



414 Proceedings of CARI 2016

assumed to have a temporary complete immunity against infection by both strains. The
transfer diagram of the model is given in the following figure.

Figure 1. Transfer diagram

Mathematically, the model is represented by a parameter-dependent ODE system (E)
of the form & = f(x, u), where the components of f are polynomials in terms of the states
variables x = (S, I1, T, Tz, I5, V, V) and the parameters u = («, 51, 82,7, 0, i, T, w) as
well. More precisely, the ODE system writes as

S = uwl—71)+wV —aS—pBiSh +vh + 6T — uS — p2SIr — 25Ty + 715
I B LS =~y —aly —ply

T = WVT+QS—5T—/82TI2—/BQTT2+'YT2+0111—[LT
T, = BT+ BTl —yTot+aly—6T, —uTh
IQ = ﬁQSIQ—FﬁQSTQ—’)/IQ—OZIQ—F(STQ—,uIQ
V o= ur+0Vr—(a+p+w)V
Vi = oV —(up+w+d)Vr
where

« is the Ab treatment rate,

¢ is the rate at which the effect of Ab treatment ends,

(1 is the Ab-S strain transmission rate,

(5 is the Ab-R strain transmission rate,

7 is the clearance rate,

1 is the birth rate which is assumed to be equal to the mortality rate,
T is the vaccination coverage,

w is the waning rate of vaccine efficiency.

The time scale here is the year and rates are expressed in terms of 1/¢. For example,
«a = (0.5 means that an antibiotic treatment takes place every 2 years in average for each
individual. The parameters («, 7, d, 7, w) are nonnegative while 81, B2, 1 are positive.

One readily checks that RZF est positively invariant under the action of the vector field
f(x,u). On the other hand, if welet P = S + 11 + T + 15 + Iz + V + Vr then by
summing up the seven equations in (E) we obtain

P'=p(l-P)



Proceedings of CARI 2016 415

and hence the affine hyperplane P = 1 is invariant under the action of the vector field
f(z,u). Thus, the set

Q:{(SvllvaTQ:I%‘/aVT) GRZ_ | S+ 1 +T+T2—|—IQ—|—V—|—VT:]_}

is positively invariant under the action of f(x, u). As we assume the host population to be
constant we only need to study the dynamics of the ODE system (E) in the compact 2.

3. Equilibria of the model

As we already have mentioned, the right hand side of the every equation in (E) is
a polynomial in terms of the state variables and the parameters. Therefore, to find the
equilibria of (E) we can resort to Groebner bases theory, e.g.; [5]. Notice that we are
only interested in equilibria whose components are nonnegative and sum up to 1. Thus,
to obtain the equilibria of the model we need first to solve the system of polynomial
equations formed by the equation S + I; + 17+ 15 + I, + V + Vp = 1 together with
the seven equations obtained from (E) by putting to O the left hand side. The two last
equations obtained from (E) form in fact a linear system whose unique solution is

(o UT)=< wt (04 p+w) nTo )
’ (tw(a+td+ptw) (ptw)(atdt+ptw)/)’

These will be the two last components of every equilibrium of the model. After respec-

tively substituting v and vy to V' and Vr and then computing a Groebner basis of the

obtained system with respect to the lexicographic order S < I} < T < Ty < Iy we

obtain an equivalent, and much simpler, system (G) consisting of 6 equations. The first

one depends only on S and has degree 3. Moreover, its three roots are all nonnegative and

are given as
S 5o
0o = 75
S QO
1 =
S — ﬂS_lz
2 = D,
with
c = aty+p
So = pla+d+p)+p+w)(l—7)+w(ad+ 6+ w0+ p+w))
Dy = (utw)(a+d+p)(a+d+p+w)
Sy = 5(’)/ + [L)D() -+ (521 + Cd(SQQ(l — 7’) + 523) + w2524),32
Dy = (a+d+p)(at+d+ptw)(Be(ul—1)+w)+ (6 +a)(utw))pbe,
where
So1 = pla+d+p)(1—7)(y0 + plor+ v+ 6+ p))
Sy = pcla+0+p)
Soz = (6 +p)*(y+ p) + a(yd + p(d + p))
S = Y0+ pla+y+6+p)

are positive quantities.
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After specializing the variable S to s in the system (G) and then solving for the other
variables we obtain a unique solution Ey, whose coordinates are

Ti
<307 0, D_(;» 0,0, v, UT)

To=a(pla+d+ )l —7)+wla+0d+2u+w).

This is the disease free equilibrium of the model. Clearly, its coordinates are non-
negative and so it has an epidemiological meaning for all the values of the parameters.
Moreover the sum of its coordinates is equal to 1.

with

By substituting s, to S in the system (G) and then solving for the other variables we
obtain a unique solution

B, = <S2 0 T, AT Azl v ’UT>
"Dy Dy(p+w) Do(ptw)
where
Ay = (p(l—7)+w)p2 — (v +p)(p+w)
Ty = To1f2+ (v +p)Do
Too = pla+d+pu)(1—7)+wl@+d+2u+w)B2+ Dy
Ios = Ip0182 + I222
where
Ti = yula+6+p(l—7)+wly(a+6+2u+w)+pla+d+p)r)
Lo = pla+d+p)(0+p+w)(l—7)+w(@d+ (8 +p+w)(d+p)
Ips = 6((a+6+ pw(a+02p+ w) + u((5 + p)? + ala + 26 + 2u)))

Clearly, T5 > 0, I32 > 0 et I35 > 0. Thus, E5 has an epidemiological meaning if and
only if A > 0. Moreover the sum of its coordinates is equal to 1. This equilibrium, when
its exists, corresponds to the absence of the first strain of the bacterial pathogen.

For S = s1, and when solving (G) for the other variables, we obtain two equilibria F;
and E3. The coordinates of F/y are

( Aq To
s1, ,—
" DoB1’ Dy

5 07 07 v, ’UT>
with
A1 = SoB1 — ¢Dy
This equilibrium has an epidemiological meaning if and only if A; > 0. Moreover the
sum of its coordinates is equal to 1.
The coordinates of E'3 are
( Ag T; Ay Ayl )
S ) ) ) ) b ,U7 v
" eDoBa (B — B2)" BiBs’ DoBiBs’ cDof1Ba (61— B2) T

where
As = 0(y+p)DoB1 + As182 + (Ase(1 — 7) + w(Assw + Ags) 162
T3 = (v+wp)pi—ch
Ay = —(y+u)Dofr 4 cDof2 + As1 8152

Is = 681+ cho
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with
Az; = —cla+d+p)(a+d+pu+w)((1—71)p+w)B2+ (a+6)(u+w))
Az = pla+d+p)(6(y—w)+ (p+w)a+vy+d+p)
Az = o+ pla+y+0+p)
Asg = (6+p)2(v+p) +a@(y+p) + p?)
Ap = af(@+6+2p)w +pla+6+p)(l - 1) +w?)

The coordinates of Fs are nonnegative if and only if A3 > 0, 75 > 0 and A4 > 0.
The fact that T5 > 0 follows from the fact that A3 > 0 (details are given in Appendix
B). Moreover the sum of its coordinates is equal to 1. Thus, F5 has an epidemiological
meaning if and only if A3 > 0and A4 > 0.

4. Stability of equilibria

In this section we study the local asymptotic stability of the four equilibria of the
model. To this aim, we use the classical technique which consists in linearizing the system
around the given equilibrium.

In the rest of this paper we let
Qu=CZ+p)(Z+p+w)(Z+a+d+p)(Z+a+d+p+w).

This polynomial is a common factor of the characteristic polynomials of all the four equi-
libria.

The characteristic polynomial P, of the Jacobian matrix 9, f (u, Fy) factorizes as fol-

lows [7]. N 4
Py=(Z+¢) (Z— D_;) <Z— ,u—i—2w> Qo,

with ¢’ = a+7+Jd-+u Hence, the equilibrium E)) is hyperbolic and locally asymptotically
stable if and only if A; < 0 and A < 0.

Concerning the equilibrium E, we have the following factorization of the characte-
ristic polynomial P; of the Jacobian matrix 0, f (u, E1).

(g AN (A
Pl _(Z+C)<Z+D()> (Z D()BI)QO.

This shows that E; is hyperbolic and locally asymptotically stable if and only if A; > 0
and A4 < 0.

For the equilibrium E5, the characteristic polynomial P, of the Jacobian matrix 0, f (u, Es)
factorizes as follows.

Py=(Z+() <Z+ é—i) <Z— D‘:zl) Qo.

This shows that Fs is hyperbolic and locally asymptotically stable if and only if A5 > 0
and Az < 0.

The characteristic polynomial Ps of the Jacobian matrix 8, f (u, F3) at the equilibrium
E3 does not completely factorize. We have in fact

Py = (2 4+ 2% + 1 Z + q0)Qo:
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where qq, q1, g2 are polynomials in terms of the parameters. We apply for this case the
classical Liénard-Chipart criterion, e.g. ; [6], to the polynomial Z3 4+ g2 Z% + ¢1 Z + qo.

When we respectively substitute s3 and 3 to .S and 7" we obtain

@ = chi(Ia+T) B2 (81— 52)
¢ (¢" + (Ty + I2)Ba) (T2 + I2) B2 + 11 81)
a2 c+2(I2+To) B2+ 11 By

All three quantities are positive provided that F5 has positive coordinates, that is Az >
0, A4 > 0. The quantity that remains to check is go(g2q1 — ¢o). After simplification we
obtain ¢g2q1 — qp equal to

2T + 1)382° + (3(Ta + )11 81 + (T + L) (el + 3¢ (Tz + 12))) 32
(L ATy + L)B1% + (3¢ + 8)[\(Ta + 1) By + (T + 12)) s
+/ I (1I1 81 + )b

which is positive at Es3 if A3 > 0, A4 > 0. Thus ¢, g1, go and qo(q2q1 — qo) are all
positive at Fi3 if Az > 0, A4 > 0. The equilibrium FEj is therefore hyperbolic and locally
asymptotically stable if and only if A3 > 0 and A4 > 0.

We have thus the following result.

Theorem 1 The model represented by the system (E) has four equilibria.

1) A disease free equilibrium Ey which exists for all values of the parameters. It is
hyperbolic and locally asymptotically stable if and only if A1 < 0 et Az < 0.

2) An equilibrium Ey which exists if and only if A1 > 0 and is hyperbolic and
locally esymptotically stable if and only if A1 > 0 and A4 < 0.

3) An equilibrium FEo which exists if and only if Ay > 0 and is hyperbolic and

locally asymptotically stable if and only if A5 > 0 and A3 < 0.

4) An equilibrium E3 which exists if and only if A5 > 0 and Ay > 0, and is
hyperbolic and locally asymptotically stable if and only if A3 > 0 and A4 > 0.

All the local codimension-one bifurcations of the system (E) are transcritical (details
are given in Appendix C). To illustrate the results, we represent the curves A; = 0,
Ay =0,A3 =0et Ay = 0R xR, in termes of the parameters 0 < S, < ;. The other
parameters (v, 7, 9, 4, T, w) are given fixed values.

The figure corresponds to @ = 0.4,7 = 0.6, = 0.3, = 02,7 = 0.35,w =
0.19. These values have been chosen to make visible the stability domains. More realistic
values, from the epidemiological point of view, could be a = 0.4,y = 15,6 = 60,4 =
0.0125,7 = 0.70,w = 0.19.

Conclusion

In this paper we studied a two-strain compartmental model with vaccination and an-
tibiotic treatment. All the equilibria and codimension-one local bifurcations of the model
have been exactly characterized using computer algebra.
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Figure 2. Equilibria in the (1, 32 plane
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A. Relation to the effective reproduction number

We check the results of Section 4 on the stability of the disease free equilibrium by
using the notion of effective reproduction number (see [8]).

It is easy to see that the effective reproduction number of the first strain in the absence
of the second one, i.e.; B = 0,51 > 0, is

5001
Reg1 = —.
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Also, one easily checks that the effective reproduction number of the second strain in the
absence of the first one, i.e.; 81 = 0,82 > 0, is

(1 =7) +w)Bs
(v + 1) (p+w)

From the variations of the infectious compartments, namely

Refo =

1:1 = 5LSB —(a+v+ul
Ty = TI+T2)B— ((0+7+p)Tz—al)
I, = S(IQ + Tg)ﬁg — (CIQ — (5T2)

and by letting w = (I1,T», I) we define

I,Spy
Flw)=| T(I2+T>)p2
S(IQ +T2)ﬂ2

This vector captures the rates at which new infected individuals, per infectious compart-
ment, appear. We also define

CIl
V(w)=| (v+6+p)Tr—al
CIQ — (5T2

the vector whose components are the differences between the rate of individuals leaving
an infectious compartment and the rate of those arriving at the same compartment. We
then compute the matrices

5051 0 0
F = 0,F(w) = 0  tofB2 tofa
0  s0B2 sof2
and
c 0 0
V=0,Vw)=| 0 v+d+p —«
0 -0 c

The matrix F' - V! is called the next generation matrix, and its spectral radius is the
effective reproduction number of the model.

80051 0 0
Fov-lo 0 tof2  tof2
YE B Yt
0 soP2  soP2
Y+He ytp

Clearly, R.g1 is an eigenvalue of F - V~1. On the other hand, the determinant |F - V‘1|
is zero, and hence 0 is an eigenvalue of F' - V~L. The third eigenvalue of F - V=1 is the
trace of the second block of F' - V! and it is equal to

(so+to)B2 _ (u(l—7)+w)Bs

= = Refra-
v+ p (v + 1) (1 + w) ¢
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Thus, the effective reproduction number of the model in question is Regr = max(Rest1, Refr2)-
This shows that E hyperbolic and locally asymptotically stable if and only if R.g < 1
[8]. This is clearly equivalent to the condition A; < 0 et Ay < 0.

B. Conditions of the existence of the equilibrium FE;

As we have seen in Section 3, the equilibrium F3 has nonnegative coordinates if and
only if A3, 73, A4 > 0. Here we show that A3 > 0 implies 75 > 0, and so F’3 has an
epidemiological meaning if and only if A3 > 0 and A4 > 0. Let

D = pla+d+p)(1—=7) (n+we+d(y+p) b+ R,

R = w(@y+ (0 +p)0+pt+w)+pla+d+p)(0+p+w))Bz + (v + p)Do,
Then we have n N

_ytw, N

with

N = yula+6+p)((1=7)B2+ (a4 6+ p)(y+ p) + wL + w?M

M = pd+~y(a+0+B)

L = (v+pa?+ (20 +3p)(y+p) + oy + pr)Be) + K

K = (v+p)0®+06Buly+ p) + (v + ur)B2) + pn(2p® + 2uy + 2(y + pr)B2)

which shows that T3 > 0 whenever Az > 0.

C. Codimension-one bifurcations of equilibria

In this section we study the local codimension-one bifurcations of the system (E) when
the parameters change. It turns out that all such bifurcations have a transcritical nature.

Stability exchange between Fy and F;. As we have seen, the equilibrium Ej is
hyperbolic and locally asymptotically stable if and only if A; < 0and A3 < 0. Moreover,
FE; has an epidemiological meaning if and only if A; > 0. When A; = 0, Fy and F;
become the same and their common characteristic polynomial

A
Py = Z(Z +¢) <Z— 2 >Qo
n+w
has 0 as a simple root, while the other ones are negative. Thus, when A; moves from
negative values to positive ones, Fy becomes unstable while I/; gains stability as long as
AQ < 0.

Stability exchange between ) and F>. When A; = 0 and A; < 0 the two equilibria
Ej and E5 become the same and their common characteristic polynomial

Py =Z(Z +¢) (Z_ %) Qo

has 0 as a simple root, while the others are negative. When A5 moves from negative values
to positive ones the equilibrium Fy becomes unstable, while F5 gains stability as long as
A <O.
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Stability exchange between > and E3. When A3 = 0 and Ay > 0 the two equilibria
E5 and Ej3 are the same and their common characteristic polynomial

(Wl —7)+w)b2+ (a+ ) (1 +w) Ao
7+ ) (7+555) @

P23:Z<

has 0 as simple root while the other ones are negative. Thus, when A3 moves from nega-
tive values to positive ones the equilibrium E5 becomes unstable while E5 gains stability
as long as As > 0.

Stability exchange between F; and E5. When Ay, = 0 and A; > 0 the two equilibria
E; and E'3 become the same and their common characteristic polynomial

A
Pis = Z(Z +¢) (Z + —1> Qo
Dy

has 0 as simple root while the other are negative. Thus, when A4 moves from negative
values to positive ones £ becomes unstable while £3 becomes stable as long as 41 > 0

D. Simulation of the vaccination effect

In this section the parameters p, v, « and § are given fixed values. For several values
of 7 and w (the vaccination parameters) we represent the curves A; =0, A; =0, A3 =0
and Ay = 0 as functions of (81,82) € R%. The light-colored regions represent the
domain of stability of the disease free equilibrium in the presence of vaccination, while
the dark-colored ones correspond to the absence of vaccination. The figures show that the
stability domain of E increases in terms of 7 but decreases in terms of w.

5 T=0.34 opréga = 0.06
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