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ABSTRACT. In this paper, we derive and analyse a model for the control of arboviral diseases which
takes into account an imperfect vaccine combined with some other mechanisms of control already
studied in the literature. We use fve time dependent controls, to assess the impact of vaccination
combined with treatment, individual protection and vector control strategies such as killing adult vec-
tors, reduction of eggs and larvae. By using optimal control theory, we establish optimal conditions
under which the disease can be eradicated and we examine the impact of a possible combined control
tools on the disease transmission. The Pontryagin’s maximum principle is used to characterize the op-
timal control. Numerical simulationsshow that, vaccination combined with other control mechanisms,
would reduce the spread of the disease appreciably.

RESUME. Dans cet article, nous dérivons et analysons un modéle, pour le contrdle des arboviroses,
qui prend en compte un vaccin imparfait combiné avec d’autres mécanismes de controle déja étudiés
dans la littérature. Nous utilisons cing contréles dépendant du temps, pour évaluer I'impact de la
vaccination combiné avec le traitement, la protection individuelle et les stratégies de lutte anti-vectoriel
telles que l'utilisation des adulticides et des larvicides. En utilisant la théorie du contréle optimal,
nous établissons des conditions optimales dans lesquelles la maladie peut étre éradiquée et nous
examinons l'impact d’une éventuelle combinaison de controle sur la transmission de la maladie. Le
principe du maximum de Pontryagin est utilisé pour caractériser le contréle optimal. Des simulations
numériques montrent que la vaccination combinée avec d’autres mécanismes de contrdle, permettrait
de réduire de fagon considérable la propagation de la maladie.

KEYWORDS : Arboviral diseases; Optimal control; Pontryagin’s Maximum Principle.
MOTS-CLES : Arboviroses, Contrdle optimal, Maximum de Pontryagin.
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1. Introduction

Arboviral diseases are affections transmitted by hematophagous arthropods. There are
currently 534 viruses registered in the International Catalog of Arboviruses and 25% of
them have caused documented illness in human populations [6, 11]. Examples of those
kinds of diseases are Dengue, Yellow fever, Saint Louis fever, Encephalitis, West Nile
fever and Chikungunya. A wide range of arboviral diseases are transmitted by mosquito
bites and constitute a public health emergency of international concern. For example,
Dengue, caused by any of four closely-related virus serotypes (DEN-1-4) of the genus
Flavivirus, causes 50—100 million infections worldwide every year, and the majority of
patients worldwide are children aged 9 to 16 years [19, 22].

For all the diseases mentioned above, only yellow fever has a licensed vaccine. Nev-
ertheless, considerable efforts are made to obtain vaccines for other diseases. In the case
of dengue, for example, tests carried out in Asia and Latin America, have shown that the
future dengue vaccine will have a efficacy between 30.2% and 77.7%, and this, depending
on the serotype [18, 21]. Also, the future dengue vaccine will have an overall efficacy of
60.8% against all forms of the disease in children and adolescents aged 9-16 years who
received three doses of the vaccine[20].

As the future vaccines (e.g., dengue vaccine) will be imperfect, it is therefore nec-
essary to combine such vaccines with some control mechanisms (individual protection,
treatment, chemical control) [1, 2, 15], to find the best sufficient combination, which per-
mit to decrease the expansion of these kind of diseases in human communities.

A number of studies have been conducted to study host-vector models for arboviral
diseases transmission. Some of these works have been conducted to explore optimal
control theory for arboviral disease models (see [3, 4, 7, 14, 17]).

None of the above mentioned models takes into account the combination of optimal
control mechanisms such as vaccination, individual protection, treatment and vector con-
trol strategies. In our effort, we investigate such optimal strategies for vaccination com-
bined with individual protection, treatment and two vector controls (adulticiding—killing
of adult vectors, and larviciding—killing eggs and larvae), using two systems of ODEs
which consist of a complete stage structured model Eggs-Larvae-Pupae for the vectors,
and a SEI/SEIR type model for the vector/host population. This provides a new different
mathematical perspective to the subject.

The rest of the paper is organized as follows. In Section 2 we present the optimal con-
trol problem and its mathematical analysis. Section 3 is devoted to numerical simulations.
A conclusion round up the paper.

2. A Model for Optimal Control

There are several possible interventions in order to reduce or limit the proliferation
of mosquitoes and the explosion of the number of infected humans and mosquitoes. In
addition of controls used in [14], we add vaccination and the control of adult vectors
as control variables to reduce or even eradicate the disease. So we introduce five time
dependent controls:

1) The first control 0 < w4 (t) < 1 denotes the percentage of susceptible individu-
als that one decides to vaccinate at time t. A parameter w associated to the control uy (¢)
represents the waning immunity process [17].
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2) The second control 0 < uq(t) < 1 represents efforts made to protect human
from mosquito bites. It mainly consists to the use of mosquito nets or wearing appropriate
clothes [14]. Thus we modify the infection term as follows:

h=(1—arua(t) A, A= (11— aruz(t) A (1
where o measures the effectiveness of the prevention measurements against mosquito

bites.

3) The third control 0 < w3(t) < 1 represents efforts made for treatment. It mainly
consists in isolating infected patients in hospitals, installing an anti-mosquito electric dif-
fuser in the hospital room, or symptomatic treatments [14]. Thus we modify the recovery

rate such that o} := 0y, + agus. ao is the effectiveness of the anti-arboviral diseases
drugs with .y = 0.3 [14]. Note that this control also permit to reduce the disease-induced
death.

4) The fourth control 0 < u4(t) < 1 represents mosquitoes adulticiding effort with
killing efficacy ¢,,,. Thus the mosquito natural mortality rate becomes (§ = o, +¢ua(t).

5) The fifth control 0 < wg(t) < 1 represents the effect of interventions used
for the vector control. It mainly consists in the reduction of breeding sites with chem-
ical application methods, for instance using larvicides like BTI (Bacillus Thuringensis
Israelensis) which is a biological larvicide, or by introducing larvivore fish. This control
focuses on the reduction of the number of larvae, and thus eggs, of any natural or artifi-
cial water-filled container [14]. Thus the eggs and Larvae natural mortality rate become
1% = pp +mus(t) and p§ = pr + nous(t) where 1, 72, represent the chemical eggs
and larvae mortality rate, respectively [14].

Note that 0 < u; < 1, fori = 1,...,5, means that when the control is zero there is
no any effort invested (i.e. no control) and when it is one, the maximum control effort is
invested.

Therefore, our optimal control model of arboviral diseases reads as

Sh =Ay, — [(1 —aqua(O)\p + pp + 11,1(t)] Sy + wui(t) Ry
Eh = (1 = aruz()AnSh — (bn + ) En

I =ynEn = [pn + (1 — agus(t))d + 0 + asuz(t)] In

Ry = (0 + azus(t))In +u1 Sy — (un +wui) Ry

Sy =0P — (1 — arua(t) Sy — (o 4 cmua(t))Sy

E-v = (1 - alu2(t))>\vsv - (,U«v + Yo + Cmu4(t))Ev (2)
Iy = 'Yva - (,Uw + Cmu4(t))1v
. FE
E = [p (1— F_> (Sw"l‘Ew"'Iu)_(s‘f'/l/E +7]1u5(t))E
E
. L
L =sE <1_F_) —(l+pLL +n2u5(t))L
] L
P =IL—(0+up)P

with initial conditions given at t = 0.

The states variables and parameters of model (2) are described in Table 1 and 2.

For the non-autonomous system (2), the rate of change of the total populations of
humans and adults vectors is given, respectively, by

{ Nh = Ap — pnNp — (1 — aous(t))01,

Ny = 0P = (pty + cmua(t)) Ny 3)

For bounded Lebesgue measurable controls and non-negative initial conditions, non-
negative bounded solutions to the state system exist [12].
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Table 1: The state variables of model (2).

Humans Aquatic Vectors Adult Vectors
Sp:  Susceptible E: Eggs Sy: Susceptible
En:  Infected in latent stage L: Larvae E, Infected in latent stage
I: Infectious P:  Pupae I, Infectious

Rp:  Resistant (immune)

Table 2: Description and baseline values/range of parameters of model 2. The baseline
values refer to dengue fever transmission.

Parameter  Description Baseline Sources
value/range
Ap Recruitment rate of humans 2.5 day 1 [10]
Hh Natural mortality rate in humans m day="  [10]
a Average number of bites 1 day~* [3,10]
Bho Probability of transmission of 0.1,0.75 day=*  [3,10]
infection from an infected vector
to a susceptible human
Yh Progression rate from Ej, to I, [+, 2] day? [8]
1) Disease—induced death rate 1072 day 1 [10]
o Recovery rate for humans 0.1428 day—" [3,10]
NhsTo Modifications parameter [0,1) [10]
o Natural mortality rate of vectors 31—07 f] day='  [3,10]
Yo Progression rate from F), to I, 2%7 5 day ! [8]
B Probability of transmission of 0.1,0.75 day=*  [3,10]
infection from an infected human
to a susceptible vector
0 Maturation rate from pupae to adult  0.08 day ! [8, 14]
jus Number of eggs at each deposit 6 day~* [8]
I'e Carrying capacity for eggs 103,106 [3]
I Carrying capacity for larvae 5x10%,5 x 10°  [3]
UE Eggs death rate 0.2 or 0.4 [14]
1153 Larvae death rate 0.2 or 0.4 [14]
p Pupae death rate 0.4 Assumed
S Transfer rate from eggs to larvae 0.7 day—! [14]
l Transfer rate from larvae to pupae 0.5 day~* [13]

The objective of control is to minimize: the number of symptomatic humans infected
with arboviruses (that is, to reduce sub-population I} ), the number of vector (N, ) and
the number of eggs and larvae (that is, to reduce sub-population E and L, respectively),
while keeping the costs of the control as low as possible.
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To achieve this objective we must incorporate the relative costs associated with each
policy (control) or combination of policies directed towards controlling the spread of
arboviral diseases. We define the objective function as

T (ur, ua, us, ua, ws) = /Otf [leh(t) + DaNy () + DsE(t) + DaL(t) + 25: B2 (t)| dt
- @
and the control set
A = {(u1,u2,us, us, us)|u; (t) is Lebesgue measurable on [0, ¢¢], 0 < w;(t) < 1,i=1,...,5}.

The first fourth terms in the integrand J represent benefit of I;,, IV,,, E and L populations,
describing the comparative importance of the terms in the functional. A high value of D,
for example, means that it is more important to reduce the burden of disease as reduce the
costs related to all control strategies [5]. Positive constants B;, ¢ = 1,...,5 are weight
for vaccination, individual protection (human), treatment and vector control effort respec-
tively, which regularize the optimal control. In line with the authors of some studies on
the optimal control (see [7, 14, 17]), we choose a linear function for the cost on infection,
D11y, D3N, D3E, D4L, and quadratic forms for the cost on the controls Byu?, BauZ,
Bsu2, Byu?, and Bsu?2. This choice can be justified by the following arguments:

1) An epidemiological control can be likened to an expenditure of energy, by bring-
ing to the applications of physics in control theory;

2) In a certain sense, minimize u; is like minimize u?, because u; > 0, i =
1,...,5.

3) Among the nonlinear representation of intervention costs, the quadratic approx-
imation is the simplest and most widely used, contrary to the linear controls that usually

lead to the bang-bang controls.
We solve the problem using optimal control theory.

Theorem 1. Let X = (Sy, En, In, Ry, Sy, Ev, I, E, L, P). The following set

A T oir
ﬂ={XeR1°:Nhs—h;Eer;LsrL;Ps—L;st L}
I k7 krks

is positively invariant under system (2).

Proof. On the one hand, one can easily see that it is possible to get,

S == On+n)Sh, En > —(un +'Yh,)]§h,> In > —(un + 8+ 0)In, Ry > —pnRy
E > (L +stup+m)E, L > —(c= +14us +m)L, P> 0 +pp +m)P
. E . L .

S’u Z _(>\v +H'U)S1m Ey 2 _(,uv +'er)E1w Iy 2 _,lev,

(%)
for (S, (0), Ex(0), I(0), Rr(0), E(0), A(0), P(0), S,(0), E,(0), I,(0)) > 0. Thus, so-
lutions with initial value in €2 remain nonnegative for all ¢ > 0. On the other hand, we
have
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Nh < Ap — pnNp,
N, <OP— N,

. E
E S/,Lb <1— —) (Sq;“l‘Eﬂ'i‘Iq;) —(S+NE)E
Kg

(6)
i o<se(1-L ~ (I +pn)L

Co=0 K. T

P <IL—(0+up)P

The right hand side of the inequalities correspond to the transmission model without con-
trol, and it is easy to show that solutions remain in €2. Then using Gronwall’s inequality,
we deduce that solutions of (2) are bounded. O

2.1. Existence of an optimal control

The existence of an optimal control can be obtained by using a result of Fleming and
Rishel [9].

Theorem 2. Consider the control problem with system (2).
There exists u* = (u}, us, uj, uj, uf) such that

( )GAJ(u17u27u37u47u5) = J(“L“;“;“Z:UE)
UL,U2,U3,U4,U5

Proof. To use an existence result, Theorem I11.4.1 from [9], we must check if the follow-
ing properties are satisfied:

1) the set of controls and corresponding state variables is non empty;
2) the control set A is convex and closed;

3) the right hand side of the state system is bounded by a linear function in the
state and control;

4) the integrand of the objective functional is convex;
5) there exist constants ¢; > 0, ¢ > 0, and § > 1 such that the integrand of the

B
5 2

objective functional is bounded below by ¢; (Z s |2) — ca.
i=1
In order to verify these properties, we use a result from Lukes [12] to give the existence
of solutions for the state system (2) with bounded coefficients, which gives condition 1.
Since by definition, the control set A is bounded , then condition 2 is satisfied. The right
hand side of the state system (2) satisfies condition 3 since the state solutions are bounded.

The integrand of our objective functional is clearly convex on A, which gives condition 4.

5
Thereare ¢; > 0, ¢ > 0and § > 1 satisfying D1 Iy, + DaNy+ D3 E+DyL+ Biu? >

=1

5 z

1 (Z |ui|2> — cg, because the states variables are bounded. Thus condition 5 is
i=1

satisfied. We conclude that there exists an optimal control u* = (u}, u3, u}, u}, u}) that

minimizes the objective functional J (w1, us, us, w4, us). O
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2.2. Characterization of an optimal control

The necessary conditions that an optimal control must satisfy come from the Pontrya-
gin’s Maximum Principle (PMP) [16]. This principle converts (2)-(4) into a problem of
minimizing point wise a Hamiltonian H, with respect to (u1, uz, us, w4, us):

5
H = Dilj + D2Ny + D3E+ DaL + Y Byu?

i=1
+As, {An = [(1— aru2) A, + pp + w1l Sy +wur Ry}

+ Az, {[1 — caua] AnSp — (un + 1) En}

+ A1, {mEn — (pn + (1 — a2u3)d + o + aguz) Iy}

+ g, {(0 + aous) I +u1 Sy — (p + wur) Ry}

+ Ag, {0P — [1 — cruz] A\vSv — (4o + ¢mua)Su} 7

+ AEu {(J- - C‘1111/2) Av Sy — (,Um + v + Cmu4)Ev} + >\]U {"/va - (Nfu + C*m,u4)11*}

E
+ g {,u,b (1 — F—) (Sv 4+ By + Iv) — (s + ug +771U5)E}
E

L
+ AL {SE (1 - F_> —(l+pr +7721L5)L}
L

+Ap {IL — (0 + up)P}

where the \;, ¢ = Sy, En, In, R, Sy, Ev, Iy, E, L, P are the adjoint variables or co-
state variables. Applying Pontryagin’s Maximum Principle [16], we obtain the following
result.

Theorem 3. Given an optimal control u* = (u}, u, u3, u}, uf) and solutions
Sy, Er, It Ry, Sy, B, I, E*, A* | P*) of the corresponding state system (2), there ex-

v

ist adjoint variables IL = (Ag, , g, , A1, s ARy » NSy, AEy s AL, AE, AL, Ap) satisfying,

dA Sh
% = pinAs, +ui(As, — Ar,) + (1 — cquz) Ay (1 - N;) (As), — Am,)
Sy A ®)
+ (1 — ajus) ]if;f (Ae, — As,)
dA\ S
dfh = e, + Wm(Ag, — An,) + (1 — cquz) J}ifhh Ay — Asy,)
5 ' )
+ (]- - al“Q)FU (aﬁuhnh - )\v) (>\SU - >\E,U)
h
i _ 1 5 A AL — A
=D + [+ (1 = agu3)d] A, + (0 + aguz)(Ar, — Ar,)
ShA Sy
+ (1= ) S O, = As,) + (1= anw) 32 (@B = M) (s, = )
h h

(10)
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ShAn
Np

g,
dt

= Nh/\Rh + wul()\Rh - )\Sh) + (1 - 041U2) ()\Eh - )\Sh)

)

Sv Ay
+ (1= a1up) == (Ap, = As,)
h

d\ E
S —Dso + (i + cmua)As, + (1 — arua)Ay(As, —Ag,) — o | 1 — — ) A&
dt I'g
(12)
d\ Sh
df” = —Do+ (pv + cmua) A, + Yo(Ar, — A1) + anufBre (1 — arus)(As, — /\Eh)N’]
E
— My (1 - E) Ap
(13)
dAr, S E
T =Dy + (pty + cmusg) A1, + afpy(1 — al“Q)Fh()\Sh - Am,) — <1 - F_> AE
(14)
d\p Kb L
W_ D3 + |:FENU+S+/LE+T]1U5:| \E S<1 FL>)\L (15)
d\
L — _Dy—Irp+ [iE +pr 41+ 772u5] AL (16)
dt Iy
d\
d—t” = (up + 0)Ap — OAg, (17)

and the transversality conditions
Af(ty) =0, i=1,...10. (18)

Furthermore,

uj = min < 1, max | 0,

0. Bn = wRh)(As, — Ar,) >}
Sy

2B,
uy = min < 1, max 0, a1 [MnSn(As, = Asi) + ASo(Am, = As,)] 7
2B,
1-— 11
w% = min { 1, max ( 0, g [(1 =06)Ar, — AR, ] In (19
2B,
wX =min{ 1, max ( 0, < Cm [SuAs, + Evdg, + LoAr,]
o ’ ’ 2B,
E nol
ug = mln 1’maX 0’ w .
2Bs5

Proof. The differential equations governing the adjoint variables are obtained by differ-
entiation of the Hamiltonian function, evaluated at the optimal control. Then the adjoint
system can be written as
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d\s, ~ OH d\g,  OH d\;,  OH d\g, = OH d\s,  OH
dt ~  8S, 4t  9E, dt 98I, dt  OR, dt  8S,
d\p,  OH d\,  OH d\g  OH d\,  0H d\p  OH
"4  0E, dt 09I, dt = OE dt  OL dt 0P’

with zero final time conditions (transversality).
To get the characterization of the optimal control given by (19), we follow [14, 17]
and solve the equations on the interior of the control set,

OH
8’[@ h

0,i=1,...,5.

Using the bounds on the controls, we obtain the desired characterization. This ends the
proof. O

3. Numerical simulations and discussion

The simulations were carried out using the values of Table 3. We use an iterative
scheme to solve the optimality system.

The optimality system for our problem is derived (see Appendix) and numerically
solved by using the so called forward—backward sweep method (FBSM).The process be-
gin with an initial guess on the control variable. Then, the state equations are solved
simultaneously forward in time, and next the adjoint equations (8)— (17) are simultane-
ously solved backward in time. The control is updated by inserting the new values of
states and adjoints into its characterization, and the process is repeated until convergence
occurs (see e.g. [5, 14]).

The values chosen for the weights in the objective functional .J (see Eq. (4)) are given
in Table 4. Table 5 gives the initial conditions of state variables. We simulated the sys-
tem (2) in a period of twenty days (t; = 20).

Table 3: Value of parameters used in numerical simulations.
Parameter Value Parameter Value Parameter Value Parameter Value

Lo 31—0 l 0.5 9 0.5 Vh 1—14
a 1 WE 0.2 Lh, 67*1% Yo 2—11
Ah 2.5 y223 6 0 0.08 wp 0.4
B 0.75 o 0.1428 Mo 0.35
Bon 0.75 w 0.05 w“r, 0.4 5 1073
T'rg 10000 s 0.7 i 0.001 M2 0.3
I'z 5000 Nh 0.35 Cm 0.2 ag 0.5

3.1. Vaccination combined with individual protection, adulticide and
larvicide

With this strategy, only the combination of the control u; on vaccination, the control
ug on individual protection, the control w4 on adulticide and the control u5 on larvicide,
is used to minimise the objective function .J (4), while the other control u3 are set to zero.
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Table 4: Numerical values for the cost functional parameters.

Parameters Value  Source Parameters  Value Source
Dy 10,000 [14] B 10 Assumed
Do: 10,000 [14] Bs: 10 [14]
Ds: 5000 Assumed Bs: 10 [14]
Dy: 1 [14] By: 10 Assumed

Bs 10 [14]

Table 5: Initial conditions.

Human states  Initial value ~ Adult Vector Initial value Aquatic states  Initial value

states
Shet 700 Suo 3000 Ey 10000
L, 220 Ly, 400 Lo 5000
In,: 100 Ly, 120 Py 3000

Rh,ot 60

On figure 1, we observed that the control strategy resulted in a decrease in the number
of infected humans (/) while an increase is observed in the number of infected humans
(I1) in strategy without control. The use of this combination have a great impact on the
decreasing total vector population (/V,,), as well as aquatic vector populations (E and L).

. 5000

000 et
N -

LK
3000
2000
1000

20

) 5 10 15
Time in days

9000| 4500]

8000y 4000

E
7000} 3500
L

6000} 3000

5000, 2500

4000] 2000

000 20 1599

5 10 15 5 10 15
Time in days Time in days

Figure 1: Simulation results of optimal control model (2) showing the effect of using
optimal vaccination combined with individual protection, adulticide and larvicide (u; #

0,u2 # 0, us #0,us #0).

3.2. The combination of all the five controls

In this strategy, the combination of all the five controls is applied. On figure 2, we
observed that combining all the five controls gives a better result in a decrease in the
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number of infected humans ([},), as well as, the total number of vector population (NN,),
and the aquatic vector populations (£ and L).

5000}
4000f
§ v
h 3000
4 * without control
100) .
—with control 2000}

1000}

5 10 15 20 5 10 5 20
Time in days Time in days

9000} 4500)

8000 4000)
g 7000

6000

3500
L

3000

5000 2500

4000] 2000

20 20

5 10 15 5 10 15
Time in days Time in days

Figure 2: Simulation results of optimal control model (2) showing the effect of using the
combination of all the five controls (u; # 0,7 =1,...,5).

4. Conclusion

In this paper, we derived and analysed a model for the control of arboviral diseases
with non linear form of infection and complete stage structured model for vectors, and
which takes into account a vaccination with waning immunity, treatment, individual pro-
tection and vector control strategies (adult vectors, eggs and larvae reduction strategies).

We performed optimal control analysis of the model. In this light, we addressed the
optimal control by deriving and analysing the conditions for optimal eradication of the
disease and in a situation where eradication is impossible or of less benefit compared
with the cost of intervention, we also derived and analysed the necessary conditions for
optimal control of the disease.

From the numerical results, we concluded that the optimal strategy to effectively con-
trol arboviral diseases is the combination of vaccination, individual protection, (with or
without treatment), and other mechanisms of vector control (by chemical intervention).
However this conclusion must be taken with caution because of the uncertainties around
the parameter values and to the budget/resource limitation.
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