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RESUME. Ce papier est dédié a la quantification de la production de chaleur dans I'hydrogel de
type HEMA-EGDMA sous chargement dynamique. On s’intéresse a la modélisation du phénoméne
de self-heating dans les polyméres, les hydrogels et les tissus biologiques. On compare les résultats
théoriques avec les résultats expérimentaux combinés avec une proposition d’optimisation numérique
pour identifier les parametres influengant le phénoméne de self-heating. D’abord, nous nous sommes
focalisés sur la modélisation de la loi constitutive de I'hydrogel de type HEMA-EGDMA. Nous avons
utilisé la théorie des invariants polynomiaux pour définir la loi constitutive du matériau. Ensuite, nous
avons mis en place un modele théorique en thermomécanique couplée d’un milieu continu classique
pour analyser la production de chaleur dans ce matériau. Deux potentiels thermodynamiques ont été
proposés et identifiés avec les mesures expérimentales. Une nouvelle forme d’équation du mouve-
ment non-linéaire et couplée a été obtenue. Enfin, une méthode numérique des équations thermo-
mécaniques pour les modéles a été utilisée. Cette étape nous a permis, entre autres, de résoudre ce
systéme couplé. La méthode numérique est basée sur la méthode des éléments finis.

ABSTRACT. This paper is dedicated to the quantification of the heat production in the HEMA-EGDMA
hydrogel under dynamic loading. We focus on modeling of the self-heating phenomenon in polymers,
hydrogels and biological tissues. We compare the theoretical and experimental results combined
with numerical optimization proposal to identify the influencing parameters on the self-heating phe-
nomenon. We develop constitutive law of the HEMA-EGDMA hydrogel, focusing on the heat effects
in this material. We set up a theoretical model of coupled thermo-mechanical classic continuum for a
better understanding of the heat production in this media. We use polynomial invariants theory to de-
fine the constitutive law of the media. Two thermodynamic potentials are proposed and are identified
with the experimental measurements. New form of non-linear and coupled governing equations were
obtained. Numerical methods were used to solve thermo-mechanical formalism for the model. Then,
this step allows us, among other things, to propose an appropriate numerical methods to solve this
system. The numerical methods is based on the finite element methods.

MOTS-CLES : Hydrogel, self-heating, thermomécanique, méthodes numériques, EDPs.
KEYWORDS : Hydrogel, self-heating, thermomechanics, numerical methods, PDEs.
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1. Introduction

Hydrogels have been widely employed in biomedical areas [1], [2], [3]. The ther-
momechanical response of these materials depends strongly on temperature, cross-link
density and frequency if the hydrogel is under cyclic loading [4]. Particular hydrogel pos-
sessing high dissipation properties may induce a heat production under cyclic loading [5].
Due to the heat production, an increase of the local temperature can be observed in the
material, a phenomenon also known as self-heating [4], [5]. In turn, the increase in tem-
perature has an effect on its properties and on the thermomechanical behavior [5], [6], [7].
Modeling and simulation methods are one of the strong characterization methods of the
physical phenomena in this kind of material [8], [9]. When the sample is simultaneously
subjected to mechanical and thermal loads, we need to develop experimental tool and cou-
pled formulation to investigate and to measure simultaneously the mechanical response
and the heat production in the sample [9], [10], [11]. The goal of this work is to identify
a constitutive law based on generalized standard materials in correlation with the experi-
mental measurements. Numerical methods for a coupled partial differential equation with
dynamic boundary conditions are developed with the conservation laws [12], [13], [14].
Nonlinear constitutive law for viscoelastic material without heat effect has been establi-
shed by Pioletti, Rakotomanana et al. for biological tissues in large deformation [9]. The
present work extends this model to nonlinear constitutive law for thermo-viscoelastic mo-
del with heat effect in the particular case of matrix HEMA-EGDMA hydrogel. In this
work, a general continuum thermomechanical framework describing the effect is adapted
to the description of the self-heating phenomenon. Numerical studies are then carried out
to examine the ability of the model to predict the heat production and to define the na-
ture of the coupling as well as to evaluate the influence of the main parameters such as
cross-link density and frequency of loading. In parallel, microcalorimetric experimental
measurements are performed to quantify the heat production and the mechanical response
in the HEMA-EGDMA hydrogel sample.

2. Microcalorimetric test

In order to characterize the heat production in the hydrogel samples, an adiabatic
deformation microcalorimeter is used [4]. The hydrogel sample consists of cylindrical
samples 5 mm of diameter and 8 mm of height are subjected to cyclic mechanical load
at various frequencies f = 0.5, ..., 1H z. For the mechanical boundary conditions, on the
top of the cylinder we apply the cyclic load, while the bottom is fixed. For the thermal
boundary condition, we have an adiabatic condition (non inward and outward flux). The
initial conditions are : initial stress null and initial temperature 6. The heat production
is measured with a specific sensor inserted within the sample and the data acquisition is
directly obtained with a computer. For a more detailed description, the reader is reffered
to [4]. The displacement is prescibed on the top of the sample to 20% of the sample
height. The sample loading is done in three parts including preload, cyclic loading and
relaxation. And the bottom of the sample is "fixed". We chose 30 s of preload, 5 mn
cyclic loading and 5 mn relaxation. For the sample we use the composition is given by :
HEMA+40%w+¢% EGDMA with 8.93 mm diameter, 5.33 mm of height, 40% of water,
6% and 8% of crosslink density.
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3. Mathematical settings

The self-heating phenomena are governed by a nonlinear-coupled partial differential
equation system deduced from two conservation equations of classical continuum ther-
momechanics. We assume the postulate of the existence of two thermodynamic potentials
the strain energy function and the dissipation potential defined per unit of the reference
volume. The model is obtained by constructing with the free energy method, new non-
negative convex energy functions given by the equation (1). For physical and mathemati-
cal considerations, convexity/polyconvexity of the strain energy and dissipation functions
are an essential point since the common methods in computer simulation depend on gra-
dient methods.

Y(E,0) = %trQE + ptrE? — 3\ + 2u)atrE(0 — 0p) — %(9 —6y)?
0
. N .
X(E, V) = Su”B + 1/ uE? + g||w2||2 1)

where A, u, a, ¢,,, N, ¢/ and k are respectively the Lamé constants, the thermal expansion
coefficient, specific heat capacity coefficient, viscosity coefficient and heat conduction
coefficient. The reference temperature is denoted by 6. Parameters «, ¢, and « are consi-
dered as constants.

Hypothesis 3.1. For the thermodynamic potentials given by the relations (1), the Lamé’s
constants A, . are known for the hydrogel HEMA-EGDMA, the specific heat capacity
coefficient is estimated by microcalorimetric test. The remaining constant are unknowns
(a|l/K], N[MPa.s], W/[M Pa.s] and k|W/(m.K))). We assume the following mechani-
cal properties for the sample :

Samples E[MPa] v AMMPa]  u[MPa] c¢,[J/(kg.K)]
Sample 1 10-30 045 3.10-9.3 0.34-1.02 2900-3200
Sample2  20-50 040 2.86-7.15 0.71-1.78 2900-3200

The balance of linear momentum and the energy conservation allow us to express the
governing equations of the hydrogel sample and can be formulated as :

82
DivFS® + DivFSY + pB = pa—; in (B x [0,T7) @
pé=(S®+8V):E—-DivQ+ pr in(Bx[0,T))
where S®(E, 0) = pdw/OE(E, §) and SV (E, V6) = dx/0E(E, V) are the elastic and
viscous parts of the second Piola-Kirchhoff stress tensor Q/0 = —9x/9VO(E, V) is the
heat flux, e = ¢(E, 0) + s6 the internal energy, s = —0v/06(E, #) the entropy density
and E = Vu + VTu + VuVTu/2 is the Green-Lagrange strain tensor.

Equations of the three-dimensional continuum, developed avove, define the initial
boundary value problem of thermomechanics. In detail, these were the description of
deformation in the context of kinematics, the formulation of the force equilibrium ba-
sed on kinetic considerations, the constitutive equation as well as the initial and boundary
conditions. We assume the following mechanical boundary conditions which include three
parts, preloading, cyclic loading and relaxation (S!DIN).
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Up E) ift <t,
u-n=-— : on (T'; x [0,T7)

Uy f) +ugcos(2mft) ift, <t <t.
P.n=0 i1 > 1, on(Dy x [0,7]) (3
P-n=0 on (I'; x [0,T1])
u-n=u on (T, x [0,T])
P=F(S°+SY)in (B x [0,7T])
I.Cu(t=0,):=0,P(t=0,-):=0 in (B x {0})

where 7 € R is a time constant. u,, € R denotes the prescribed displacement during
the preloading and the relaxation. ug € R denotes the prescribed displacement during the
cyclic loading. We consider two time characteristics ¢, € R the preloading time and
t. € R the time during which the cyclic load is applied. Experimentally, we apply the
preload as a ramp form during the preload time ¢,,. Then we apply the mechanical cyclic
loading during the load time t.. Finally, after ¢, 4 ¢, the discharge and relaxation time
are beginning for a new t,,. For the heat boundary condition, we use the same continuous

t]u(n, M)
[TTIIIII11I1] ry,
VYYVVVVVVVVVVVVYY
Iy
I (B) I (B) I
Fu Fﬂ

Figure 1. Boundary conditions : mechanical boundary conditions (left), heat transfer boun-
dary conditions (right).

media B € R with the VB the volume. The boundary of Bis 0B =T', UT'; UT, with
the surface S%. For each time ¢ € R, this volume is under heat production density pr,
a heat flux gy on one parts of the boundary of B and with a prescribed temperature 6, on
other parts of the boundary of B. The heat boundary can written as :

Q- -n=q on (I'y x [0,T7)
Q n=0 on (I'; x [0,T7]) @)
Q n=~k(0—0s) on(l.x[0,T])
LCO(t=0,-) := 0, in (B x {0})

in which, go is the prescribed heat flux on (I'; x [0,T]), k. denotes the convection co-
efficient and 6 is the prescribed temperature, 6, is the initial local temperature of the
sample and 6 is the thermodynamic temperature.
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By using the definition of the potential 1 and x in the equation (1), the elastic and
viscous parts of the second Piola-Kirchhoff hold :

S = Mr(E)I 4+ 2uE — 3\ 4 2u)a(d — 6p)I;  SY = Ntr(E)I + 24/'E 5)

In order to identify the numerical parameters of the self-heating model with the ex-
perimental measurements and for the correlation study, we compute the Cauchy stress
tensor in the current configuration. For this purpose, we use the classical formulation with
the deformation gradient. Then, the elastic part and the viscous part of the Cauchy stress
tensor are given successively by :

o°® = %tr(E)FIFT + 2§FEFT — (32 + 2@)%(9 — o) FIFT
I

!
oV — %tr(E)FIFT + Q%FEFT 6)

Starting from the expression of the heat flux Q = —x6V#0 in (B x [0,T7]) , by using the
divergence theorem and rearranging the terms in the heat equation, the governing equation
(2) can be written as :

Div [p(Atr(E)FI + 24FE) — (3X + 2u)a(6 — 0,)FI] + Div [)\’tr(E)FI + QM’FE]

8%u

e
09 . ) _
p;—v 59 = (3\ + 2u)aftrE + Ntr?E + 24/ trE? — k0A0 + &||VO||*+pr
o
B.C and L.C (Cf. eq.(3) and (4))

in (B x [0,T7)

(7
We assume two cases :

—Case 1 : Local self-heating model x = 0, Q = 0 For the hydrogel HEMA-
EGDMA, the heat conductivity coefficient is very small (v = 0), then the heat flux by
conduction in the sample is neglected (Q = 0). Analogously, the change in internal energy
caused by the sources of heat is local vanishes and there is no heat diffusion in the media.

Hypothesis 3.2 (Local self-heating model). We assume for this case that we have a local
heat production. The internal heat production is not function of the space but just function
of time 0 := 0(t). In this case, the quantity Div [(3\ + 2u) (0 — 0)FI] = 0 (effect of
the temperature change on stress) in the governing equation (7). In fact, we have the effect
of the velocity on the internal heat production.

For the second approximation we assume that, for the hydrogel HEMA-EGDMA, the
heat conductivity coefficient of the sample is significant (x # 0), then the heat flux by
conduction in the sample is also significant (Q # 0). Indeed, the change in internal energy
is caused by the sources of heat and the deformation.

—Case2: Kk #0,

Hypothesis 3.3 (Total self-heating model). In this case, we assume that the total heat
is function of the space, the gradient of temperature and displacement. In fact, the heat
conductivity is not neglected, then, the internal heat production is function of the space
and time 0 := 0(x, t). In this case, the quantity Div [(3\ + 2u)a(0 — 00)FI] # 0 (effect
of the temperature on stress) in the governing equation (7). In fact, we have the two
coupling terms : the effect of the velocity on the internal heat production and the effect of
the temperature change on the stress.
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The character of the initial boundary value problem of structural mechanics depends on
the types of structure and loading that have to be described, which, on the other hand,
decisively affect the modeling of the load-carrying behavior. In the previous sections, the
essential modeling aspects were already discussed on geometrical and material levels. In
summary, the modeling can be categorized, in essence, according to the aspects of geome-
trical linearity or non-linearity, material linearity or non-linearity, and time-dependence
or time-independence. The various approximation levels differ significantly in the com-
plexity of the numerical solution of the underlying physical problem. The correlation
between the simplification of the physical problem and the complexity of the numerical
solution is illustrated in this work. Furthermore, the dynamic or static formulation of the
problem is decisive for the effort expanded on the numerical solution.

‘We assume linearity of the temperature and the displacement. For physical conside-
ration, the sample dimension is small for the hydrogel HEMA-EGDMA, we therefore
assume that the heat production in the sample is local.

Hypothesis 3.4 (Linearity in temperature). We assume small variation of the tempe-
rature distribution in the sample the prescribed cyclic displacement. The temperature
0 € R is expessed as a reference temperature 6y € R . plus the perturbation 6 € R ;..
We have : 0 = 0y + 50 and 6 = 50.

— Case | : Local self-heating model < = 0, Q = 0, Cf. hypothesis 3.2
The governing equation can be written as follows :

Div [p(\tr(E)FI + 24FE) — (3\ + 24)ad¢F1] + Div [XtrEFI + 2;/FE]
0%u .
+pB = Pgp in (B x[0,717)

56 . . )
pcv%—t = 3\ + 2p)(bp + 60)trE + Ntr?E + 24/trE? + prrin (B x [0, 7))

B.C and I.C (Cf. eq.(3) and (4))
(®)
— Case 2 : Total self-heating model x # 0, Q # 0, Cf. hypothesis 3.3.
The governing equation can be written as follows :

[ Div [p(Mr(E)FI + 24FE) — (3) + 211)ad0F1] + Div [Xtr(E)FI + 24/FE
2

,001,% =B\ +2p)a(fg + 5«9)trE + Ntr2E 4 20/trE? — k0 A0 + pR
in (B x [0,T7)

B.C and I.C (Cf. eq.(3) and (4))
©))
In order to show the solution of the problem with the applicability of the thermovis-
coelastic model as defined in the equation (9), we firstly assume one and two dimensional
problem.

4. 2D and 1D approaches

As preliminary steps, it is important to recall the two and monodimensional formula-
tion. The thermomechanical formulation will help us to understand each term appearing
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in the equation (9). We assume one-dimensional compression. For the deformation analy-
sis of two-dimensional continua, the plane stress and the plane strain states are of interest.
The plane strain state is mostly used in cases where the dimension in one direction is
very large with the loading in this direction remaining unchanged. The derivation of these
equations can be found in the following sections.

Hypothesis 4.1 (Small strain assumption). As a first approximation the essential compo-
nents of the description are small, linear elastic deformations

We used the dimensionless form of the govering equation. For this purpose, we intro-
duce new variables as defined in the equation (21) :

p=T a=y q=t po b 290

) = ; 10)
V4 (%) U to 90

The governing equation with the initial and the boundary conditions, and keeping the
notation v but not 4 can be written in the following form :

A [(0%u G (060 B (9% _ 0%u |
5 (@)4—5 (%) +5 <@) + p b—w ln(BX [O,T])

0d0 D o E (01 H 5200 .
E F( 56)(833)—’_?(@)4_1781'2 +pR in (B x[0,77)

040 040
59(L,0) = Href: ( ﬁ%) . = 0, (_ﬁ/%) = 0, U(O,t) =0

u(l,t) = ugsin(wt);  w(z,0)=0; 4(z,0)=0

(11)
In which,
(A 42p) o (N +2p) .o ug o
A= P U0 B = QW C= pt_27 F= ey (12)
(BA+2p)aby (N +24) (BA 4 2u)pa K03
D=y B= ey 6= Ry H =T a3
— Case 1 : Local self-heating model, x = 0, $4¢ =0, %% = 0, Cf. hypothesis
3.3.
For the first approximation, we assume that the heat source pr 0 and the body
force pb = 0, then, we introduce K; := A , Ky := B , K3 = K4 := =. For

7
the first equation, we use the variable (space -time) separatlon u(z, t) = ¢(z)T(t) in

the first equation, for a physic solution we have T'(t) + Kok*T(t) + K1k*T(t) = 0.
The characteristic equation is given by 72 + Kyk?r + K1k? = 0, the discriminant is
A = K2k* — 4K k?. We define a critical damping for A = 0, K§ = 23C the damping

coefficient is defined as ¢ := % = ﬁ—i We denote by 0y = K1k2, we have T( )+

20k T (t) + Q2T (t) = 0 The characteristics equation is given by 52 4 2(Qgs + QF =
0, the discriminant is A, = 403 (¢* — 1). For the solution, we assume that 7'(0)
Ty, T(0) = 0 and consider following three cases :

1) Critical damping ¢ = 1, A, = 0, s = —{ The solution is T'(t) = ae®
ae~%! the expression bte~%* also satisfies the differential equation. We have T'(t)
(a + bt)e*t, in which a = Ty and b = Towo, In this case we have

T(t) = To(1 +Q ot )e~ P!
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+oo .
sin(wnt) . _q
u(z,t) = Tp Z WW sin(k,z) (1 +Q gt)e 2!
n=1

30(t; ) Z ktan(knx)

too —Qot :
0 1
+ Z exp (— € heos(kn)sin(wnt) KaToue (1 +6) t0)> <9ref - —Kz ktan(knx)>

n=1 Sln(kﬁ)
“+o0
_ T0u4k£ —Qot
S33 = Z sin(kf)e cos(kyx) [weos(wnt) Ko (1 4+ ot)]
X Touekt
Z Ty ;cﬁ) ~20lcos(kna) [+sin(wnt) (—K2Q8t + K1 (14+Qot))]

2) Sub-critical damping { < 1, A; <0
1= =00 (CHIVI= ), s=-0 (C—jVT-C),  f=-1 (4

We denote by Q = Qy+/1 — (2 the solution can be written as :

() = [(1 LI aoction | (4 JC% o (Q0C—5)t
T(t) = %e—%ﬁ [(1 + JCQO) eI 4 <1 = ]%20) eﬂ'ﬂt} (15)
Using the transformation of ¢=7** and ¢/*, we have
T(t) = Toe ¢t {cos(Qt) + %C bln(Qt)]
u(z,t) =Ty Z Ug sm(k:nx)e foct [cos(&lt) + %C s1n(£2t)]
n=1
)= S~ s
+ 60(t; x) = ; e ktan (k)
> — (ot - - .

N Z exp (_ e ¢ kCOS(an)Sln(w”t)sli{sg];o;;g(gZCOS(SH) + Cmn(&lt)&lo))

K
<9ref - Fik‘tan(kx))

+oo
o Tougké —(Qot ) .
Sag = 221 sin(knm)Qe cos(kpx) [weos(wnt) Ko (Qcos(2t) + sin(Qt)20)]

+o00
+ z::l %Q—CQ&COS(&@) [sin(wy,t) (K1 (Qcos(§2t) + ¢sin(2£)0))]

+o0 T il B | |
+ z::l sin?:#)ﬁe Soteos (k) [sm(wnt) (—sin(Qt) K, (92 n C2Q(2)))]

3) Super-critical damping ¢ > 1, A, >0

== (C+VP=1), s =—0 (¢~ V1) (16)

463
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The solution is
T(t) = 20 ¢t (1= ¥) VeI (14 ) V1]

Z Zsm EZ; ) m(knw)e_mot [(1 -Y) e_ﬂomt]

T() ” Sln(wnt) in(kyz)e —(Qot |:+ (1+7Y) P/Qomt]

2 — (ké)
+0oo K4
00(t;x) = Z Ektan(k‘nm)
n=1

+o0 _ . .
2e ¢ ot s(kpx)s nt)Csinh (Y Qot) K37 K
—I—Zexp 2 kcos( w?sm(w t)¢sinh (Y Qot) K3Toue (Gref B 4k'tan(k’nw)>
sin(k€)y/¢? —1 K3

—+o00 _ .
2e =0t kocos (kv )sin(wt) Yycosh (Yo Qot) K3Toue K,
+ E exp [— Sn(k0)Y, ] (F)Tef — Ektan(k,,,m))

n=1

Gun — Jio TOU/ZkéCOS(k'nl')6—(<+Y5)Qut [[(~14 20ty ¢ 4 (14 2ot} y,]
BT sin(kD)Y, s

sin(wy t) Ky + Ko [(—1+ Vo 08) (4 (1 4 2= 01) Y, | weos(wnt)
—K2 (—1 + BQYSQot) Sill(wnt)Qo}

In whichY = \/ﬁ and Y, = /(2 - 1.

— Case 2 : Total self-heating model, x # 0, & (22) £ 0, 9 2°9 £ 0, Cf. hypothesis
3.3.

Remark 4.1. The local behavior of a thermoviscoelastic body for one dimensional pro-
blem was totally described in the previous section by means of the initial boundary value
problem. Generally, the solution of this differential equation is not analytically explicit.
Therefore, approximation methods, in particular the Finite Element Method, are used in
order to find an approximate solution. This method does not solve the strong form of the
differential equation. It merely solves its integral over the domain, the so-called weak
Jorm of the differential equation. This weak formulation forms the basic prerequisite for
the application of approximation methods.

5. Identification of the model parameters

For a given thermodynamic potential, the main problem after the formulation is to
calculate or measure the physical constants in the model. If the physical constants can
be identified with the experimental measurement, it is appropriate to determine these
constants by using classical identification procedures. In the opposite case, we need to
identify these constants by using analytical/numerical approaches. For that, we use the
one dimension analytical description in order to identify the physical constant in the mo-
del.
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5.1. Cost functions

According to the classical method of optimization, the identification method of phy-
sical constant in the model of self-heating (thermoviscoelasticity) can be expressed using
complex parameters. The parameters to be identified are o, \', ¢/ and K

Definition 5.1 (Cost functions). The cost function for the self-heating model is given by
the following equation and we have to minimize the following coupled cost function :

comp

2 T ror obse
x = inf inf inf inf ! JFSF (@A’ W) =0 (17)
AERL NER4; ' ERL KER 4 g (5900mp ((M,)\ /’ ‘u‘/, /{) _ 5901}86)

Where [ and g are the functions used to measure the difference between the computed
and observed quantity, in general we use the square function f, g := % - 1%

S = Mr(E)I 4 24E — (3\ 4 2u) (8 — 60)T + Ntr(E)I + 24'E (18)

Definition 5.2 (Least square cost functions). For the first approximation, we define least
square cost functions to identify the physical parameters of the model :

2
2 comp
1 “ T r 1\ _ obse
x= inf inf inf inf = ‘(JFSF ) (@A’ i) —o
GER4 NERy W ERL KERL 2 /33 5
1665 (A", 4 ) — (66°%5¢ + 273.15) |

19)

5.2. Computation, splitting

We present in this section the computation setting using splitting methods. The main
step is summarized by the following scheme.
1) Define : Initialization [, Ap, (10, Ko]; 600 = 6 + 273.15, v

2) Minimize Self-heating model :
oL OOP (k=0---n)

a) Minimize wave equation : (input [ag, A}, 1., K]

x = inf inf inf inf 1 EFSFT o (a M\ W) — w
aLE€R4 M ERy ul€Ry kiER Y 2 J /33 ky Mo ok SB

_ N
2(N, + 1)
LOOP wave equation (k <— k + 1)

else
End (output [cv, A, 1), £k])

if > v (physical condition)
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b) Minimize heat equation : (input oz, A}, p},, Kx])

1 2
— 3 : ; comp / i obse
X = aklélf N A/:gf . M;gf N nk,lélf .2 H56’ (0t Algs o Kk:) — (59 + 273.15) ||

0 !/ ! ! !
i Joe — apgrs A — N1 g — Hiy1s Bk — Kk | 2 €

eLOOP (k +— k + 1)
else
End (output [, A, 14, £k))

Hypothesis 5.1 (Cost functions for one dimensional model). For the one dimensional
model, the constant K1 is known via A, . The unknowns are K, K3, K4. We have to
minimize the following cost function.

Fobs (1|2
X = Kin7fz I’in7fa I}in7f3 (28)/33 P (K1, Ks) - B )
2€R4 K3€R4 Ky€R ¢ H §pcomp (K171{25K37K4) _ (5901)56 _'_273.15) ”2

(20)

6. Numerical approximations

In this section, we propose a finite element method for a 2D stess elasticity problem.
The equations established in the previous section are solved using a finite elements dis-
cretization in space. In time, an implicit Euler scheme is applied for the time integration.
In fact, we consider finite element approximations of the pure dynamic displacement trac-
tion/compression boundary value in three-dimensional nonlinear thermomechanical vis-
coelasticity associated with a homogenous viscoelastic material. We use the following
weak form of the governing equation. The corresponding weak formulation in space-time
is obtained by multiplying by the test functions : firstly, for the balance of momentum, by
the scalar product with a vector-valued test function ju which has to be compatible with
the geometric boundary conditions. Then, this equation is integrated over the volume of

the sample.
Div [p(Atr(E)FI + 2uFE) — (3)\ + 21)ad0F1] su dV?
B

+/ Div [)\'tr(E)FI+2u’FE} dudv® +/ pBiu dv?® = / p(g—:(Su vt
B B B

/ pcv%&?* dvh = / 3\ + 2u)a(f + 60)trEso* dV® + / Ntr?E60* dvP

JB JB J B

+ [ 24/ trE?50* dVB — / kB ASO60* dVE + / préd* dvB  vse* e [H'(B))
B B B

v = 68_1: in (B x[0,77)

2
For all [§®] = (du, 66™). In which, dV® and dS® are respectively the volume and surface
element. Using the divergence theorem and taking into account the boundary conditions,



Proceedings of CARI 2016 467

the final representation of the weak form of the coupled self-heating model reads as fol-
lows :

— / p(Mtr(E)T + 24E) : VouT(Vu + 1) dV5 — / (83X + 2p1) padfI : VéuT
B B

(Vu+1)dvP + /

(Xtr(E)I + 2M'E) :VouT (Vu+1) dvP + / pBdu dv?
B JB

- paa—:m AV ou e [H'(B))

JB
/ pCU%w* dvh = / (3X + 2p) (0 + 60)trES0™ dVE + / Ntr?Es0* dv5

B B B
+ / 2/ trE266* dVB + / K0V 80.Y56* dVE — / KOV 60.n.60* dS®

B oB

+ f pré0* dv® vo0* e [H'(B)]?

JB

ou .

v=p in (B x[0,77)

(22)

6.1. Computations

For the computation we use Comsol Multiphysics to compute the model by using
general form of PDE. This tool allows us to solve systems of time-dependent or stationary
partial differential equations in one, two, and three dimensions with complex geometry.
There are two forms of the partial differential equations available, the general form and
the coefficient form. They read

0*u Ou .
Bamﬁ'daaﬁ-V'F—Fln(BX[O,T])
OR\"
—n-I'=G+ u ;0 = Ron (0B x [0,7T])
2
ea%+dag—?+V-(—cVu—au—l—’y)-I—au—i—B-Vu:fin(B><[(),T])

—n(—cVu—au+9)+qu=g—hT;hu=Ron (0B x [0.T]) (23)

respectively. The second kind of equation (coefficient form) can only be used for mildly
nonlinear problems. For most nonlinear problems, the general form needs to be used.

Remark 6.1. The coefficients of the coefficient form may depend both on z, t, and u.
Observe that a dependence on u is not recommended. The flux vector I" and the scalar
coefficient F, G and R can be function of the spatial coordinates the solution u and
the space and time derivatives of u. The variable i is the Lagrange multiplier, and T
denotes the transpose. q and g are respectively the boundary absorption coefficient and
the boundary source term.

The second method, to solve numerically the non-linear mechanics in this software
is to define directly the thermodynamic potential in the software. The thermodynamic
conditions as convexity must be verified before introducing the thermodynamic potential.

2

V-(c®+0")+pb 0¢ = J'FS°FT in (B x [0,7))

j— u.
_pat27
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o’ =J'FSYFT in(Bx[0,T]) F=Vu+1I, J=detF;
E=(C-1)/2; C=FTF=1+Vu+Vu+VTuvu/2

s° _2pg(d; v — 29X in (B x [0,7)) (24)

oC
In which, F is the deformation gradient, I is the identity matrix, E and C denote respec-
tively the Green-Lagrange and the Cauchy-Green strain tensors. To solve numerically the
self-heating model we assume : for the first approximation, we use the general form of
PDE given by the equation (23) (first equation) for the wave and the heat equations. In
a second approximation, we use the second method (24), it consists to introduce directly
the thermodynamic potential for the wave equation and the general form of PDE for the
heat equation. In this work, we use these methods to compare the numerical solution of
the self-heating model.

e 010 [ u Z“ 019 [ u r«
5 am (R )+ e la() v le ]

—n-(TY4+T% =0, G=0, on(Ty
R=—-u on(T,

R=-u—uy on(Ty

—n-(T4+1% =0, G=0, on(dB-T.
—n-T% = h(30 — §6,.;), G =0, on(T,

Il
X X X X X -/
=
S £
N———

Implementation in Comsol Multiphysics software is based on the equation 25.

6.2. Numerical approximations for local self-heating

Using the hypothesis for local self-heating in the sample, (Cf. hypothesis 3.2). The
equation (??) becomes :

p 0]9 (u 0 019 (u Fse
[0 o}at2<59>+[0 pcv](’?t 0 )TV o

©[](2) e

r
In which

B =0; r = (3\ + 2u)a(by + 60)trE + Xtr2E + 2p/trE?
S® = Mr(E)L + 2uE — (3\ + 2p)a(0 — 6p)1; SY=Ntr(E)I+24/'E  (27)

Implementation in Comsol Multiphysics software is based on the equation (26).

6.3. Numerical approximations for non-local self-heating
Cf. hypothesis 3.3. The equation (25) becomes :

ool ()= [3 (o) v [ 5]

S [T]) e
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in which

B=0; = (3\ + 2u) (0 + 60)trE + /\’trzE‘—f— 2,u’trE'2
S¢ = Mr(E)I + 2uE; SY = Ntr(E)I+ 24/E (29)

Implementation in comsol multiphysics software is based on the equation (28).

7. Experimental and numerical results

As a first result, we want to verify that the experimental measurement of the tempera-
ture in the sample is not biaised by the friction between the hydrogel and the temperature
sensor in the microcalorimeter during the deformation. We can then conclude that there is
no temperature increase due to the friction and, then, eventual temperature increase will
be due to self-heating phenomenon of the tested sample. The effect of the self-heating
and corresponding temperature increase in the hydrogel is presented in figure 2. A clear
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Figure 2. Observed temperature in the sample of HEMA-EGDMA vs. time for ¢ = 6% (left)
and ¢ = 8% (right), f = 0.5 [Hz], f =1 [Hz] and f = 1.5 [Hz].

temperature increase is obtained over time for the three different frequencies and two
different cross-linkers concentration. The temperature increases between the initial and
last cycles read 2.5°C'. There is clear dependency of the temperature increase to the ap-
plied frequency. The higher the frequency is, the higher the temperature increases. These
experimental temperature evolution were used to identify the parameters present in the
analytical 1D model. A good correlation is obtained between the experimental data and
the model as shown in figure 3.

Based on the these correlations, the obtained identified parameters of the model are
reported in Table 1.

Samples M [MPa.s] p'[MPa.s] «o[l/K]|
Sample 1 357.93 39.77 1.9e-4
Sample 2 393.646 51.701 2.1e-4

Tableau 1. Optimized constants of the samples after equation (20)

Finally the parameters reported on table 1 were injected in the FEM model (see equa-
tion (21)) and the computed temperature evolutions were then plotted in figure 4 It can
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Figure 3. Correlation between computed (analytical solution) and observed temperature
in the sample of HEMA-EGDMA vs. time. for ¢ = 6% (left) and ¢ = 8% (right), f = 0.5
[Hz], f =1 [Hz] and f = 1.5 [Hz].
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Figure 4. Computed (numerical model) temperature in the sample of HEMA-EGDMA vs.
time for ¢ = 6% (left) and ¢ = 8% (right), f = 0.5 [Hz], f =1 [Hz] and f = 1.5 [Hz].
be obtained that the obtained curves closely match the experimental measurement of the

hydrogel self-heating, not only the frequency dependence, but also the cross-linkers de-
pendence could be caught by the developed model.

7.1. Influence of the cross-link density on the self-heating

In order to have a closer look to the influence of cross-link density on the self-heating,
we report on the same graph the temperature evolution of the hydrogels for the two dif-
ferent cross-linker density (6% and 8%). It can be observed on figure 5 that the decrease
in the cross-linker density caused a significant change in the heat production and conse-
quently a more limited temperature increase during cyclic loading. The effect of the cross-
link density is implicitly taken into account in the model through the dependency of the
cross-link density in the model parameters.

7.2. Dissipation in function of frequency and cross-link density

In this subsection, we present the experimental results for the dissipation in the hydro-
gel obtained from the force-displacement hysteresis curves. We evaluate the effect of the
temperature increase on the dissipation during the different phase of the test (preloading,
cyclic loading and relaxation).
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loading and relaxation). f = 1 [Hz] for the cyclic loading.
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We also illustrate the variation of the hydrogel dissipation in function of the cross-

link density and the frequency. Without surprise, it can be seen in figures 6 and 7 that
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the dissipation is function of the cross-link density and the frequency of loading as for
the temperature evolution. More interestingly, we can also observe from this figure that
the shape of the hysteresis curves depends on the number of loading cycles. For the same
sample under the same loading condition, the shape of the hysteresis curves is completely
different if we consider the first, the intermediate or the last cycles. As there is a direct
correspondence between the number of cycles and the corresponding temperature in the
sample (through the temperature evolution presented in figure 2 (for example), we can
deduce that the dissipation is then also function of the temperature.

Indeed, a closer look to the Figures 6 and 7 highlights that the behavior of the hydrogel
presents a shift between elastic, viscoelastic and again elastic behaviors at two critical
temperatures. This unexpected (and to the best of our knowledge not reported before)
behavior was observed for all tested samples.

8. Concluding remarks

In this paper a combined analytical-numerical-experimental approach was developed
to evaluate the self-heating phenomenon in a specific hydrogel. The proposed methods
are general enough to be used to characterize other types of materials. We demonstrate in
this study that the developed model could adequately describe the self-heating behavior
of the hydrogel. The influence of two main parameters (cross-link density and loading
frequency) on the temperature evolution could also be taken into account in the model.
We have to mention that the ranges of the frequency in this work were limited to 0.1-2 Hz
for the numerical approaches and to 0.5-1.5 Hz for the experimental measurements. The
cross-link density of the hydrogel was limited to 6% and 8% and the percentage in water
is prescribed to 40%.

From the experimental data, it has been observed that the hysteresis characterizing
the dissipation through the loop force-displacement during the harmonic loading changes
its shape in function of the cycle numbers. Two phenomena could be taken into account
to explain this observation. First, we can consider that during the loading, the internal
structure of the hydrogel changes adapting its structure to the loading. The second pheno-
menon, which could explain the change of the hysteresis curve over time, is the change
in temperature of the self-heating hydrogel. As the number of cycles increases so do the
hydrogel temperature. It can then be considered that the increase of temperature changes
the mechanical parameters of the hydrogel. For example, in the situation where the elastic
parameters would increase with the temperature, as the same displacement was experi-
mentally imposed on the hydrogel, an increase mechanical energy will then be transmitted
to the hydrogel.

In general, the developed model could be useful in the phase of design of the hydrogel
for a particular application. For example, with the idea of using this kind of dissipative
hydrogel for the controlled delivery of a drug through the temperature increase , a link has
to be established between the number of cycles and the targeted temperature increase. The
developed model would then be useful in this situation to determine the cross-link density
needed and/or the mechanical loading regime that the hydrogel should be exposed to.
In another application, it has been shown that the toughness of the hydrogel could be
increased by increasing its dissipative properties . Again in this situation, the developed
model could be used to design the most dissipative hydrogel under known mechanical
conditions.
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