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RESUME. Nous présentons une approche pour estimer les sources électriques dans le coeur & partir
de mesures non invasives enregistrées sur la surface externe du thorax. Lapproche est basée sur la
méthode du gradient topologique. Cette méthode consiste a étudier le comportement d’une fonction
co(t via une perturbation locale du domaine. Nous montrons que I'approche proposée est capable
d’identifier un terme source quand le support de la source est réduit dans I'espace.

ABSTRACT. We present an approach for estimating electrical sources within the heart domain from
noninvasive measurements recorded on the outer surface of the torso. The approach is based on
the topological gradient method. This method studies the behavior of a cost function during a local
perturbation of the domain. We show that the proposed approach based on the topological gradient
method has actually been able to identify the source terms when they are clustred in space.

MOTS-CLES : Le modéle bidomaine, électrophysiologie cardiaque, gradient topologique, analyse de
sensibilité.
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1 Introduction

In order to localize the electrical sources in the heart, we make use of a recent me-
thod based on the topological gradient introduced by Sokolowski [7] and Masmoudi [6].
The topological gradient was originally used as part of the optimization shapes in solid
mechanics [5]. This approach has subsequently been applied to a large number of areas :
in imaging, it was first used for the detection of contours [4], in image classification [1],
inpainting [2] and segmentation [3]. The calculation of topological sensitivity associated
with the cost function of the inverse problem provides good qualitative information on the
location of obstacles.

In this work, we are interested in the identification of the source term f from the
boundary data obtained from the solution of the following system of equations :

—div((oi + 0e) V) =f in Qg
—div(orVur) =0 in Qr
O'TV’LLT.TZT =0 on Pext- (l)
Ue = ur on X,
oeVuen+orVurnyr =0 on X,

where Qp (respectively €2r) is the heart (respectively, torso) domain (see figure 1), 2 =
00 gy is the epicardial boundary and T’y is the body surface. The tensors o7, o and o1
are respectively the intracellular, extracellular and thoracic conductivity tensors. The torso
potential is denoted by u7. The source term f is defined by

f=div(giVVy)

where V,,, = u; — ue with u, and u; are respectively the extra-cellular potential and the
intra-cellular potential. If we consider the dynamic of the electrical wave, the transmem-
brane potential V,,, is governed by a reaction diffusion equation and is coupled to the
extra-cellular potential, following these equations

Xm0t Vin + Lion(Vin, w) — div(o;VV,,) — div(oiVue) = Igpp in Qx (0,7,
w4+ G(Vip, w) =0 in Qx(0,7)
oiVVp,.n =0 on 90 x(0,7),
()

where I, is a given external current stimulus. w represents the concentrations of
different chemical species and variables representing the openings or closures of some
gates of the ionic channels. The ionic current I, (V;,,, w) and the function G(V;,,, w) are
described by the Mitchell and Schaeffer model [8]. Note that the equation (1) represents
the diffusion of the electrical potential at a given time. The combination of equations (1)
and (2) provides the model of the electrical wave propagation in the heart and the torso.
This is known in the litterature as the the bidomain-torso coupled problem. In this study,
the dynamic of the electrical wave is not considered in the identification of the source, we
only consider (1). The bidomain-torso coupled problem is only used to generate syntheti-
cal observations. . '

By defining Q@ = Qg UQp, u = { Z; :E 85 and o = { E,a; +oe) ig 85 ,
the problem (1) could be rewritten as follows
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Figure 1 — The heart and torso domains

{ —div(eVu) = flg, in Q 3)

oVu.ny =0, on ey.

2 Topological gradient method

We use two notations of the cost function to be minimized : j(Qy) and J(ue.qp) »
where u. o, is the solution to the system (1). The idea of topological asymptotic analysis
is to measure the effect of a perturbation of the domain Qg on the cost function. For a
small € > 0, let Q. := Qg \9_E be the perturbed domain by the insertion of an inclusion
0. = xo + €0, where xg € Qy and 6 is a given, fixed and bounded domain of RY, contai-
ning the origine, whose boundary dw is C. The topological sensitivity theory provides
then an asymptotic expansion of the considered cost function when the size of w, tends to
zero. It takes the general form :

7(Qe) = §(Qu) = ple)g(xo) + olp(e)),

where p(e) is an explicit positive function going to zero with €, and ¢g(zo) is the topolo-
gical gradient at point . Then in order to minimize the criterion, one has to insert small
inclusion at points where the topological gradient is the most negative. In our case, the
source would be identified in the zones where the topological gradient is the most nega-
tive. j(€2.) would be a function minimizing the gap between the solution u,. solution of
the following problem and a given observed data.

{ —div(eVu.) = flg, in Q, @)

oVu.nr =0, on ey,
where
f _ f1 on 96
€ fo on Q..
is the unknown source to be identified.

2.1 Variational formulation

The solution of the problem (4) is defined up to a constant, thus we define the suitable
functional space by

V={veH®Q) , /Q v =0}
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and the bilinear form A, and the linear form [, as
Ac(ue,v) = / oVu Vv and . (v) = / fov YoeV
Q Q

Then the variational formulation of this problem reads such that

/chu€VU = / feo,Yo e V.
Q Q

The solution wu. is solution of A.(u.,v) = l(v),Vv € V. To determine the topological
gradient we need to compute the adjoint solution of this problem.

2.2 Adjoint problem

We consider the direct solution . satisfying A.(u.,v) = l.(v) and we define the
lagrangian L (u,p) = J(u) + Ac(u, p) — l(p), for every u,p € V. One could check that
if u, is solution of (4) we have

Le(te,v) = J(ue)

We denote D, L. and D, J the derivative of L. and J respectively, so

Dy Le(ue,v) = Dy J(ue)
Then we define the abstract adjoint equation by

(DyLe,p) =0,V € V
we have

(D30 + [ aVpvs =0

So

/Q FVPVY = —(Dy3(u), ¥)

Finally the adjoint solution p associated of the cost function J is given by

{ —div(eVp) = —-D,J(u) in Q )

Vp-nr =0 on 3,

We remarque that the computation time and memory space required by the state ad-
joint method are largely reasonable. In the next section we will derive the variation of the
cost function j with respect to the insertion of a small subdomain w, in the cardiac domain
Q7. We begin our analysis by giving the main hypothesis 1, then the main result of this
section is presented by Theorem 1. It concerns the topological asymptotic expansion of a
cost function J.
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2.3 Main result
Let us consider the following hypothesis :

hypothesis 1 We assume That
(i) J is differentiable with respect to u, we denote DJ(u)its derivative.
(ii) There exists a real number 0J () such that

J(ue) — J(up) = DI (uo)(ue — ug) + ed|w€|8,7(:c0) + o(ed)
(iii) lue = ull3aor,,,) = 0(e?)
(i9) 9 (e — 0) 2o, = ofe?)

The expression of the topological gradient for this problem is given by the following
result :

Theorem 1 Under the hypothesis above the cost function j has the following asymptotic
expansion :

3(Q) — §(Qn) = e|we|dJ (z0) — e?|we|(fr — fo)p(wo)
In other words, the topological gradient at xg is :
g(xo) = 0J(x0) — (f1 — fo)p(0)
where p is the adjoint solution.

Proof 1 We always seek to minimize the function J defined above. We consider the la-
grangian
Le(u: 1)) = 3(”) + As(ua U) - le(v)

u, is solution of problem 4, then we have
3(Q2e) = Le(ue, v)
So the first variation of the cost function with respect to € is given by
J(Qe) = () = Le(ue,v) — Lo(uo, v)
= J(ue) — J(uo) + Ac(tie,v) — Ag(ug,v) — le(v) + lo(v)

Then from the definition of A. and l. we have :
Ac(ue,v) — Ag(ug,v) = / oV (ue — ug)Vo
Q
L0) = to(v) = [ (f1 = fo)o
Choosing v = p the adjoint solution is solution of (5)

/ oV (ue —ug)Vp = —DJ(ug)(ue — ug)
Q
Then we have

J(90) = 3(9) = 3(ue) — A(uio) — D (uo) (e — o) — / (o — folp
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From the hypothesis we have

§(Q) = §() = e¥we|0J (20) — €?|we|(f1 = fo)p(wo)
So we have
3(Qe) = j(Q2m) = ple)g(zo) + o(p(e))
where
9(zo) = 0J(x0) — (f1 — fo)p(z0)

where 0J(xy) depends on the cost function. We will present in the next section some
examples of the cost function and the associated dJ(xq) term.

3 Numerical results

In this paragraph we aim to recover the source term with the help of the non-invasive
observations on the external boundary of the torso. We use the bidomain model in order
to create a source term based on reaction diffusion equation. We solve the electrostatic
source identification problem at a given time step. The topological gradient method is im-
plemented using the following algorithm :

e Solve the forward solution of the problem 4.

e Compute the adjoint solution of the problem 5.

e Compute the topological gradient g.

e Search for the minimum of the topological gradient.

In order to numerically test the topological gradient method, we consider a two cost
functions 3, (u) =[5 [u — weps|*dz and J,(u) = [y [Vu — Vueys |[*dz, where
Uops 1S the observed data at the body surface I'.,:. We tested this method for both cost
functions in two different scenarios. The first case is for clustered source. The electrical
source in this case is obtained by solving the bidomain equation with a single site stimuli
until 4ms. The second case is for a distributed source, The electrical source in this case is
the gradient of the transmembrane potential at 20 ms after a single site stimuli.

clustered source :

In figure 2 (a), we show the distribution of the extracellular potential in the heart
domain after 4ms of a single site stimulation. The topological gradient distribution is
shown in figure 2 (b) for the cost function J, and figure2 (b) for the cost function J,.
The green circle in figures 2 (b,c,e,f) denotes the position of the source at 4 ms and the
red point is the source obtained using the topological gradient method. The source at
time 4ms could be deduced from figure 2 (e), where we represent the distribution of
f = div(e:VV,,). We distinguish two clustered sources. We remark that the electrical
source is globally well localized. The two cost functions seems to capture one of the two
sources at time 4ms.
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(a) (b) (©)

(e)

Sl @ o

Figure 2 — (a) the solution u, at 4 ms, (e) : the source. (b) (respectively,(c)) : the topo-
logical gradient for the cost function J, (respectively,J,) in the heart thorax doamin. (f)
(respectively,(g)) : The topological gradient for the cost function J; (respectively,J,) in
the heart doamin.

Distributed source

Here we test the capability of the method in localizing distributed sources. We run a
simulation of a single site stimuli and we extract the data after 20 ms. In figure 3 (a), we
show the distribution of the extracellular potential in the heart domain. The topological
gradient distribution is shown in figure 3 (b) for the cost function J, and figure3 (b) for the
cost function J,. The green circle in figures 3 (b,c,e,f) denotes the position of the source at
20 ms and the red point is the source obtained using the topological gradient method. The
source at time 20ms could be deduced from figure 3 (e). We distinguish two sources far
from each other. We remark that the first cost function still provides an averaged position
which is here very far from both real sources figure 3 (e). By the contrary, the second cost
function still captures with a good accuracy one of the two sources at time 20 ms.

4 Conclusion

We presented a new approach for localizing electrical sources in the heart. This ap-
proach is based on the topological gradient method. We have tested this method on in
silico data obtained by solving the bidomain problem. The numerical results show that
the method is accurate when dealing with clustered sources. Our investigation shows that
the considering the cost function J, (u) = [, ar.,, | Vu— Vb |2 is better than considering
Jo(u) = f ar... |u— 7l/nbs|2. The first capture one of the two sources. The latter tries to find
an averaged position. This works well when the source is clustred but when the sources
are far from each other, the function J, (u) seems to localise the source that is the closest
to the body surface. These preliminary results have been conducted in 2D simulations and
have to be confirmed with much more testing with multiple stimuli and multiple sources
for the 2D and the 3D cases. This would be the topic of our future investigations.
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(a) (b) (©)
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Figure 3 — (a) the solution u, at 20 ms, (e) : the source. (b) (respectively,(c)) : the topo-
logical gradient for the cost function J, (respectively,J,) in the heart thorax doamin. (f)
(respectively,(g)) : The topological gradient for the cost function J; (respectively,J,) in
the heart doamin.
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