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ABSTRACT. Image processing such as image denoising, edge detection and image segmentation,
etc, plays an important role in various fields. The objective of image denoising is to reconstruct an
original image from a noisy one. In this talk, we propose a nonlinear equation based on the p(-)-
biharmonic operator to denoise the images. First, we consider a topological gradient approach in
order to detect important objectes of the image. Then, we chose the variable exponent p(-) adap-
tively based on the map furnished by the topological gradient. Finally, we consider the split convexity
method in order to linearize the proposed equation. We present some numerical examples to show
the performance of the proposed method.

RESUME. Le traitement d'images tel que le débruitage, la détection de contour et la segmenta-
tion, etc., jouent un réle important dans divers domaines. Lobjectif du débruitage d'image est de
reconstruire une image originale a partir d’'une image bruitée. Dans cet exposé, nous proposons un
modeéle non linéaire basé sur I'opérateur p(-)-biharmonic pour restaurer les images. Premiérement,
nous considérons une approche de gradient topologique afin de détecter les importants objets de
l'image. Ensuite, nous avons choisi la variable p(-) en fonction du gradient topologique. Finalement,
nous considérons la méthode de la décomposition convexe afin de linéariser le modele proposé. Nous
présentons quelques exemples numériques pour montrer la performance de la méthode proposée.

KEYWORDS : variational method, image denoising, biharmonic operator, topological gradient, speckle
noise, nonlinear PDE.

MOTS-CLES : Méthode variationnelle, débruitage d 'image, opérateur biharmonique, gradient topo-
logique, bruit de type speckle, EDP non linéaire.
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1. Introduction

In this work, we are interested in the restoration of images highly corrupted with
multiplicative noise. The objective of image denoising is to reconstruct an image v : 2 C
R? — R from an observed one f : 2 — R which is degraded and contaminated by noise.
The degradation model that we consider is the following:

f=ut+na, 1

where 7 : {2 — R s a positive function and that follows the Rayleigh-distribution. Model
(1) represents the degradation of an image corrupted by speckle noise, usually present in
medical ultrasound imaging [5, 6]. We consider the following partial deferential equation
for denoising the ultrasound image:

2
OnAu = 0,u =0, on 02,

{Ai(x)u + a% =0, inQ,
where A2 u := A(|Aul[P(")=?Au) is the p(-)-biharmonic operator, p : @ —]1,2] is
measurable function called exponent and « is a positive parameter. For more details
about the exponent functions, we refer the reader to [3, 7].

The variable exponent 1 < p(x) < 2 is chosen so that to slow diffusion near edges in
order to highlight them, and to enhance diffusion in smooth regions. A classical idea of
choosing the values of the exponent p is to make an adaptive procedure as follows: first,
we consider the topological gradient method with p(z) = 2 to identify the edges in order
to preserve them. Second, we perform a local selection of the exponent 1 < p(z) < 2
with the help of the map furnished by the topological gradient.

2. Well-posedness

Let Q be a bounded and Lipschitz open subset in R?. In the following theorem, we
establish the well-posedness of equation (2).

Theorem 2.1. Let f € X = {u € W2?@)(Q) such that g—g = 0 on 00} with infg f >
0. Then, equation (2) admits a unique solution u in X satisfying the maximum principal

inf f <u <supf.
Q2 9)

Proof. First, we note that (2) is the Euler-Lagrange equation of the following minimiza-
tion problem

- . P(@) (F-w?
{ue1§3£1>0} {Ep(x)(u) : /Q|Au| dav+c>z/Q " dz p. 3)
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By the classical compactness, semi-continuity and convexity arguments of the energy
Ep)(-), it is easy to verify that (3) has a unique minimizer, which is equivalently the
unique weak solution of (2). Od

3. Edges-detection and preservation

The big challenge in image restoration and segmentation problems is how to accu-
rately detect features such as arteries, filaments, internal organ, etc. To meet with this
challenge, we employ here the topological gradient method which was widely used in
edge detection [1, 5]. We start by inserting a small crack o, := {zo + €o(n)} in the
domain 2, where zy € Q, & > 0, o(n) is a straight crack, and n is a unit vector normal to
the crack and we minimize the cost function

() = J(u€)=/ | Au, |? dz,
Q\oe

where u, is the unique solution of the following equation defined on the perturbed domain

Q. ¥\ 7.

2_ g2 .
A2u6+a% =0, inQ,

80ue = Bue —, on 99, Q)
% = Au, =0, on do..

After that, we measure the impact of such a modification of the domain on this cost
function by computing the following asymptotic expansion as € goes to zero

J(ue) — J(ug) = p?G(z0,n) + o(p?),
where G(zo,n) is the topological gradient given by [1, 5]:
G(z0,n) = —mAug(zo) - (n,n)Avo(20)(n, 1), )

and v is the solution of the adjoint problem

6
Gr = g =, on 0. ©

dn ~ On

{sz + azu—f;'u =—-A%, inQ,
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4. Numerical computation

4.1. Split convexity method

However, for such a choice of p(-), equation (2) is strongly nonlinear. For that, we in-
troduce an artificial time variable ¢ and for any fixed number 7', we transform our problem
to the following time-dependent one:
us = =VE,y(u), inQx (0,71, @

u(.,t=0)=f, in £,

where VE,(.)(u) denotes the Gateaux derivative of £, .y(-) about w.

After that, we consider the split convexity method (see [2, 4]) to solve problem (7).
The basic idea of this method is to split the functional E,.) into a convex part treated
implicitly, and a concave one treated explicitly. In our case, we split the energy E, (. as

follows:
Epy=Er2 = Eap,

where

B = C—1/ |Au|2d:c+c—2/ |uf? da,
2 Jg 2 Ja

1 (f —u)? c 2 c2 2
Es, =—/—Au”(z)d$—a/—dz+—/ Au d:c-i——/u dz,
» Qp(m)l | T a 3 ﬂ| | 3 Q||

and c¢; and ¢, are two positive constants. Let 7 be the time-step, and write ¢, = k7,
uF(x) = u(z,tx), with k = 1,2,... [T/7] — 1, then, the resulting discrete time stepping
scheme for an initial condition u° is is given by

(73 —u,
% +e1AAUR 1+ suksr = —A7 yuk + e AAu + c3u’ —a

‘We use Neumann boundary conditions on 9€2:

8uk _ 8Auk

o

4.2, Algorithm

The steps of the restoration algorithm are the following:
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Algorithm 1 MAIN ALGORITHM
Given f and a.

1) For p(-) = 2, compute u and v which solve equations (4) and (6), respectively.
2) Compute the topological gradient G(xzg, n) for each point z( € .
3) Update ¢(-) as function on G(zg, n) to obtain a new exponent and solve (8).

In order to update to exponent p(-), we use the following formula
Pa(z) = 1+ exp(—p|G(z, n)|), Vz € Q,

where 1 > 0 is a constant.

4.3. Results

We present here some numerical results in order to show the efficiency of our method.
In Figure 1(c), we observe that the blood vessels are well detected by the topological
gradient method. The main difference between the noisy image (Figure 1(b)) and restored
one (Figure 1(b)) is compared quantitatively by using the SNR and SSIM indicators. The
segmented image is presented in Figure 1(d). We remark that all the regions of the image
are well identified.

This remark holds true for the synthetic image presented in Figure 2.
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(a) Original image. (b) Noisy image (SSIM =0.43, SNR
=12.5).

(e) biharmonic model (SSIM=0.76, (f) p(-)-biharmonic model (SSIM
SNR=18.95dB) =0.81, SNR =18.93).

Figure 1. From left to right and top to bottom: (a) Original image, (b) Noisy image, (c)
Topological gradient , (d) The variable exponent p(-) (e) biharmonic model and (f) p(-)-
biharmonic model.
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(a) (b) SSIM=0.73, PSNR=19.63dB, SNR=9.46dB
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(e) SSIM=0.93, PSNR=27.77dB, SNR=17.47dB  (f) SSIM=0.94, PSNR=30.6dB, SNR=20.31dB

Figure 2. From left to right and top to bottom: (a) Original image, (b) Noisy image, (c)
Topological gradient , (d) The variable exponent p(-) (e) biharmonic model and (f) p(-)-
biharmonic model.



