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RESUME. ’Analyse isogéométrique (AIG) est une stratégie moderne de résolution numérique des
équations différentielles, proposée a l'origine par Tom Hughes, Austin Cottrell et Yuri Bazilevs en
2005. Cette technique de dicretisation est une généralisation de lanalyse par éléments finis classique
(AEF), congue pour intégrer la conception assistée par ordinateur (CAO) et AEF, afin de combler
I'écart entre la description géométrique et I'analyse des problémes d’ingénierie [1]. Le but de ce travail
est d’examiner et d’évaluer la méthode de Galerkin discontinue (GD) classique et la méthode de GD
dans le contexte isogéométrique (IG) pour résoudre le probleme d’advection. Ces deux méthodes
sont basées sur le choix d’'une base lagrangienne locale et d’'une base de Bernstein respectivement.

ABSTRACT. Isogeometric analysis (IGA) is a generalization of classical finite element analysis (FEA)
with the main aim of closing the gap between the geometrical description and the analysis of engi-
neering problems. The basic IGA concept, based on the isoparametric paradigm, consisted of using
basis functions commonly found in CAD geometries, such as B-spline, to represent both the geometry
and the physical fields in the solution of problems governed by partial differential equations (PDEs) [1].
The purpose of this work is to examine and evaluate classical discontinuous Galerkin (CDG)method
and discontinuous Galerkin method in the isogeometric context (IGDGM) for solving time dependent,
advection problem. These two methods are based on the choice of a local Lagrangian basis and
Bernstein basis respectively.

MOTS-CLES : Galerkin Discontinu, analyse isogéométrique, flus de Lax-Friedrichs, extraction de
Bézier.
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1. Introduction & background

The CDG method was originally introduced in 1971 by Reed and Hill [5], for the
numerical solution of the nuclear transport PDE problem. Subsequently the method has
found far greater use in broad application in large-scale data intensive science and en-
gineering problems. In contrast to the stabilized continuous Galerkin FEM, DG method
produce stable discretizations without the need for stabilization parameters. However,
this method combine the best properties of the finite volume (FV) method and conti-
nuous Galerkin FEM. In the fact, FV method can only use lower degree polynomials, and
continuous FEM require higher regularity due to the continuity requirements, therefore,
the idea of this method is to decompose the original problem into a set of subproblems
that are connected using an appropriate transmission condition (known as the numerical
flux). Though DG methods have gained increasing traction in large-scale application mo-
deling and analysis, a shortcoming in the DG methodology is the inability to fully recover
complex underlying geometries in the meshing domain. To overcome this problem, we
combine IGA with the DG method to get IGDG method. As mentioned before, IGA is a
computational technique that improves on and generalizes the classical FE method, the
main benefit of thismethod is the exact representation of the geometry in the language
of computer aided design (CAD) tools. This simplifies the meshing as the computatio-
nal mesh is implicitly created by the engineer using the CAD tool. The IGDG method
combines the best properties of the FV method and IGA, in fact FV method can only
use lower degree polynomials, and IGFE method require to use functions from CAD like
Bernstein (B-spline, NURBS) to determine the field where the PDE takes place and to
numerically solve it. Therefore, The IGDG method is the DG method formulated on ele-
ment that exactly preserve the geometries generated by CAD tools. An important property
of B-spline in the context of IGA is the ability to perform Bézier extraction. Bézier ex-
traction provides the capability of recovring a local Bernstein-Bézier representation of the
geometry from the global B-spline CAD. In this work we will discusses specific details
of implementation of IGDG method for the advection problem.

2. Bernstein basis

Definition (Univariate Bernstein).
The Bernstein polynomials of degree p are defined explicitly over the interval [0, 1] by :

BFQ)=CECF1 - F YV k=0,..,p

Definition (Multivariate Bernstein).
In order to define Bernstein in higher dimensions, we make use of the tensor product.
Let p = (p1,Ppo, ..., pd) be a vector in N?. The d-dimensional Bernstein polynomials are
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defined by a tensor product of d univariate Bernstein polynomials with possibly different
degrees p1,p2, ..., pg and multi-indices k1, k2, ..., k4. Therefore, V¢ = (¢1, (2, .-, (a) €
[0,1]¢ we get :

BE(¢) =Bl (¢1) ® Bl2 (&) ® ... ® BE4(Ca)
where, the multi-indices k = (k1, ko, ..., kq).

3. B-spline functions

Univariate B-spline functions are defined in parametric space using a so-called vector

denoted =, in unit size (1D) is a set of m non-decreasing coordinates : = = {51, &2y ém }

The univariate B-spline function A ,, of degree p is defined according to the Coxde
Boor recursion formula [2] :

forp=0:
_ 1 if &<E<g Vi=1,...,m—1
Nio(€) = { 0 otherwise H (1]
forp>1:
_( £-6& . §itpt1 — € ,
Nip(§) = (m)/vz,p—l(f) + (m)MJA,p—l(S) (2]

In order to define multivariate B-splines functions in higher dimensions, we make use
of the tensor product.
Let p = (p1,p2, ...,pq) be a vector in N and let for all j = 1,...,d, E; is a 1.D knot
vector defined by : o _

E]’ = {givgév cery £511+P1+1}
Furthermore, we denote the 7; univariate B-spline of degree p; defined on the knot vector
E; by Ni, p, (&7). Then, with the multi-indices i = (41, i2, ..., a), p = (p1, P2, -..,pa) and
n = (n1,ng, ..., nq) the d-dimensional tensor product B-spline is defined by :

Nip(€) = Niy py (€7) ® Nig p (67) ® .. ® Niy pa (€7)

3.1. B-spline curves
Given n basis functions A; ,, ¢ = 1,...,n and corresponding control points P; € R,

i=1,..,n
thus a piecewise-polynomial B-spline curve is given as :

Co(6) = S Nip (P,
=1
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3.2. Extracting Bézier curves from B-splines

To decompose a set of B-spline basis functions to its Bézier elements, called Bézier
decomposition, a straightforward approach consists in using the knot-insertion procedure
p times, for each of the existing interior knots (£,.2, ..., &, ). Theoretically, the interior
knots should have multiplicity of (p + 1) to form truly separated Bézier elements. By
doing so, the multiplicity of p is sufficient to represent the Bernstein polynomials, which
in this context are also referred to as Bézier basis functions. It is important to point out
that the Bézier patch is a particular case of B-spline patch, for which the number n of
functions (and control points) is equal to p + 1.
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Figure 1. Bézier decomposition (right) from a quadratic B-spline basis (lef) by knot inser-
tion.

4. Classical discontinuous Galerkin method

DG is a class of FEM using completely discontinuous basis functions. In contrast to
the stabilized continuous Galerkin FEM, DG method produce stable discretizations wi-
thout the need for stabilization parameters, due to their flexibility in local approximation
they offer, together with their good stability properties [3] [4].

In the following, we describe the discretization of the advection problem by the classical
DG method :

{ (X, t) + V.(Cu(X,t)) =0 V(X,t) € Qx[0,T] [3]
u(X,0) = up(X) VX e
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where u(X, t) is a scalar quantity transported by a continuous velocity field 2.
In the DG method, the domain €2 is subdivided into a union of finite number N,; of cells
{Dk}fcvjl, such that :

Nei
Q=)D with D(\Di=0 VI<k#I<Ng
k=1

Thus, we denote by 7 a subdivision of 2 into N,; elements Dj,.

T={Di, 1<k<Na}
So on each cell Dy, the discrete unknown uﬁ is represented as a linear combination of
well chosen basis functions of the space of polynomials of degree p. Then, the finite-
dimensional subspace VY, is defined as :

Vi={verX®) |v, €PB(Dy) VI<k<Ni DyeT}

where P,(D},) represents the space of polynomials of degree up to p defined on the ele-
ment Dy. By applying Greens formula and introducing the numerical flux f* (in the
present work, we use the local Lax- Friedrichs recipe), the weak formulation can be writ-
ten as :

For each element Dy, € T :

dul (X, 1) ko e " B
— v (X)dX = up (X, )eVvp(X)dX — [ up(X,)vp(X)Ea“dl

Dy, 5t Dy, Tk

We denote 72* the outer unit normal to T'* of the element Dy,.

Therefore, the local problem takes the form of a linear system, which can be written in

the following matrix form :

M*ou* = R¥(uk) + f*(u*)  Vte[0,T] k=2,..,Ny—1 [5]

Therefore, in the present work, a RK2 and RK4 are used for time integration. Because
we are focusing on DG schemes, we discuss the limits for the C.¢; number when the DG
method is used in conjunction with the RK time integration approach. An extra condi-
tion on the size of the timestep must also be satisfied, a Courant Friedrichs-Lewy (CFL)
condition :

At 1

o] 70 < o

hy ~ 2p+1
where | c | is the largest wave speed, h,, is the smallest element width, At is the length of
the time step and p is the degree of the approximating polynomial.

vt e [0,T] Vv, € VP [4]
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The L? error of the numerical approximations are depicted in Fig. ( 2) which indicate
that the rates of convergence are of the type O(h?*!).
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Figure 2. 1D advection problem - L-errors from DGFE method in conjunction with RK
method for a sinusoidal initial condition and Lax-Friedrichs flux.

5. Isogeometric discontinuous Galerkin method

In this section, we present a method that combines isogeometric analysis (IGA) with
the discontinuous Galerkin (DG) method for solving hyperbolic equations. The basis
functions are continuous within each patch, and discontinuous only on patch boundaries.
‘We also highlight that IGA space is local to patches rather than elements, in comparison
with FEA. Therefore, the DG application in IGA is a patch to patch relation instead of
an element to element. This fact is important to remember, since every time we mention
about partitions in the domain, we are referring to patches that consist of elements. In
order to apply the IGA methodology, the physical domain §? is subdivided into patches
Qe,

Ne
S(Q) = {Q°} |
such that :

Nel
Q=" with Q°(2'=0 V 1<e#I<Ny

=1
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Then, we define the test functions in the physical domain 2¢ such as :
(@,y),. = (79(z,y)) = (BU(y) = (BP1(TEm)) = (B(Em)°
(B°©) o (B"n) = (%) & (32(m))’

where, T’ is the transformation of the parametric domain Q to the physical domain 2 :
T:Q—Q, (&) — (2(&n),y(n)

Applying a IGDG method, the solution v is approximated by u, € VP, we can postulate
the following approximation to the solution :

p+1p+1

ui(mu) =3 (B1©) (B2) ug,

i=1 j=1

where ug; : [0, T] — R?, V 1<1,j<p+1arelocal unknown functions.
Therefore, the local problem takes the form of a linear system of size (p+1)2 x (p+1)2,
which can be written in the following matrix form :

Meu® = Ru® + F¢  Vte[0,T] Vl<e<N, [6]

L4(Q2) error
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Figure 3. 1D advection problem - L?-errors for a sinusoidal initial condition, RK?2 and
RKA4.
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Figure 4. 2D advection problem - L? errors for the IGDG method in conjunction with RK 4

for different grids.

An optimal convergence rate is found, the method being of order p + 1 with respect to

L?—norm.
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6. Conclusion

As mentioned before, the major reason for using DG methods lies with their abi-
lity to provide stable numerical methods for first order PDEs problems, for which clas-
sical FEM is well known to perform poorly. However, for geometric partitioning of the
computational domain, the DG method uses standard disjoint finite element meshes, each
element determines a single subproblem, the solution is calculated separately for each
element of the computational mesh. The solution for the whole computational domain is
achieved by summing over all the elements of the mesh. In this work a new family of
discontinuous Galerkin methods which combines the IGA with the DG method, called
IGDG method has been developed for the advection problem, our method takes advan-
tage of both IGA and the DG method. In the fact, DG ideology is adopted at patch level,
i.e., we employ the traditional IGA within each patch, and employ the DG method across
the patch interfaces to glue the multiple patches. Obviously, due to IGA (NURBS), all
conic sections can be represented exactly, thus eliminating the geometrical errors at the
beginning.
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