120 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Dynamic resource allocations in virtual
networks through a knapsack problem’s
dynamic programming solution

Vianney Kengne Tchendji*, Kerol Roussin Donteu Djoumessi*, Yannick
Florian Yankam*

*Department of Mathematics and Computer Science

Faculty of Science

University of Dschang

PO Box 67, Dschang-Cameroon

vianneykengne @yahoo.fr, djoumessikerol @ gmail.com, yyankam @yahoo.fr

RESUME. La multitude des services a forte valeur ajoutée offert par Internet et améliorés considé-
rablement avec l'intégration de la virtualisation réseau et de la technologie des réseaux définis par
logiciels (Software Defined Networking), suscite de plus en plus I'attention des utilisateurs finaux et
des grands acteurs des réseaux informatiques (Google, Amazon, Yahoo, Cisco, ...); ainsi, pour faire
face a cette forte demande, les fournisseurs de ressources réseau (bande passante, espace de sto-
ckage, débit, ...) doivent mettre en place les bons modéles permettant de bien prendre en main les
besoins des utilisateurs tout en maximisant les profits engrangés ou le nombre de requetes satisfaites
dans les réseaux virtuels. Dans cette optique, nous montrons que le probléme d’allocation des res-
sources aux utilisateurs en fonction de leurs requetes, se raméne a un probléme de sac a dos et peut
par conséquent étre résolu de fagon efficiente en exploitant les meilleures solutions de programma-
tion dynamique pour le probléme de sac a dos. Notre contribution considére I'allocation dynamique
des ressources comme une application de plusieurs instances du probléme de sac a dos sur des
requetes a valeurs variables.

ABSTRACT. The high-value Internet services that have been significantly enhanced with the integra-
tion of network virtualization and Software Defined Networking (SDN) technology are increasingly at-
tracting the attention of end-users and major computer network companies (Google, Amazon, Yahoo,
Cisco, ...). In order to cope with this high demand, network resource providers (bandwidth, storage
space, throughput, etc.) must implement the right models to understand and hold the users’needs
while maximizing profits reaped or the number of satisfied requests into the virtual networks. From
this perspective, we show that the problem of resource allocation to users based on their queries is
a knapsack problem and can therefore be solved efficiently by using the best dynamic programming
solutions for the knapsack problem. Our contribution takes the dynamic resources allocation as a
multiple knapsack’s problem instances on variable value queries.

MOTS-CLES : Réseau virtuel, allocation des ressources, sac a dos, programmation dynamique, four-
nisseur de services, fournisseur d'infrastructures

KEYWORDS : Virtual network, ressource allocation, knapsack, dynamic programming, service provider,
infrastructure provider

Dynamic resource allocations in virtual networks through a knapsak problem's dynamic programming solution

1. Introduction

The limits of the Internet (security, architectural rigidity due to IP protocol, ...) like its
resistance to the adoption of new services (such as VOD, telephony over IP, etc) generally
known as the phenomenon of Internet ossification [2, 3], led to rethink its architecture.
This is how network virtualization was proposed, the idea being the maximum exploi-
tation of physical resources through their sharing and reusability in order to meet the
dynamic needs of users ; the integration of the Software Defined Networking (SDN)[1]
allowed to better face this resources allocation challenge (known as virtual network em-
bedding problem[9]) through a central equipment called controller, which defines the ma-
nagement policies of the network. This resource allocation is a subproblem of a most
global one, commonly known as the Virtual NetWork Embedding (VNE), which is NP-
hard to solve[4] because of the number of constraints involved.

Nowadays, since the network virtualization involves the Internet operators to be di-
vided into infrastructure providers (InP) who hold the physical resources and the service
providers (SP) who exploit these resources to offer services, both parts must setup ap-
propriate techniques to match their resources allocation with the varied requests of end-
users[4]. Thus, techniques such as auctions [6] or game theory can be used to allocate
these resources, although they do not always make it possible to decide in all cases.

Our contribution in this paper is the proposition of a 0-1 knapsack-based model for
resources allocation in a virtual network environment integrating the SDN architecture.
‘We exploit the dynamic programming solutions of the 0-1 knapsack problem to build an
efficient allocation solution within the limits of the available substrate network resources.
The goal is to find the best solution that satisfies the majority sides in competition. We
also model a dynamic resource allocation as a multiple resource allocation instances with
various requests at different times.

The rest of this paper is organized as follow : In section 2, we present network virtua-
lization and SDN paradigms. Section 3 presents a formulation of the resource allocation
problem, showing the equivalence with the 0-1 knapsack one, followed by the problem
resolution through a dynamic programming solution related to the knapsack problem. A
conclusion ends this paper.

2. Network virtualization and SDN paradigms

Our work environment is made up of several virtual networks under the supervision
of a network controller.

2.1. Virtual networks

A virtual network is a set of virtual devices interconnected by virtual links through a
physical infrastructure [3]. In each virtual network, we find components created from a
physical component by a special software called hypervisor : these are virtual machines
[8] (see figure 1a). Thus, the resources used within a virtual network are provided by the
substract network (see figure 1b). Basic physical network resources are provided by an
Infrastructure Provider (InP) (see figure 1b). This Infrastructure Provider hires resources
from service providers (SP) which creates virtual networks to exploit them. There are
three levels of resource allocation : virtual network, SP and InP ; all of these levels are
under the supervision of the controller which can initiate cooperation requests with other

121

122 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

InPs when needed. Without this controller, it would not be easy to manage resources with
a large virtual network instances.

Operating System || Operating System

(a) Virtual machines.

O Physical Node = Physical Link
@ Virtual Node Virtual Link
Revisitation O End Host
< Virtual Network
{(VN2)
Service .
Provider 2 (SP2)

Service H
Provider 1 (SP1);

Infrastructure
Provider 2 (InP2)
Infrastructure

Provider 1 (InP1)

v2

(b) A network virtualization environment.

Figure 1 — Virtualization principles.

2.2. The Software Defined Networking solution

Software Defined Networking (SDN) is a new network architecture paradigm where
the control plane is completely decoupled from the data plane for each network equip-
ment [10]. The control plane is a part of network which permits to calculate the network
topology or to exchange routing information, while data plane or forwarding plane is a
part of network where the packets are commutated. A network controller who have the
control plane, defines the network management policies (routing, bandwith allocation, to-
pology discovery,...) and assign it to the equipments. This decoupling allows to deploy a

Dynamic resource allocations in virtual networks through a knapsak problem's dynamic programming solution

monitoring plane on standard servers with flexible computing capabilities [11], compared
to conventional switches. Thus it opens the opportunity to design an efficient centralized
control plane. In addition, the creation of a standardized API (Application Programming
Interface) between the control plane and the data plane allows developing network ser-
vices. The control plane is capable of injecting states in the network elements.

3. The resource allocation problem

3.1. Problem description

Intuitively, resource allocation is a problem of finding the best way to satisfy the most
important parts of possible queries from a given set, taking into consideration several
constraints involved[5]. It can also consist in satisfying a less important range of requests
submitted with the same constraints. There are several problem formulations for virtual
network provision [5, 7]. However, these different formulations focus on the allocation
of virtual links and bandwidth [7] in a restricted virtual network, while it shall be more
general. Another work [12] proposes in the context of the Internet of Things, a power allo-
cation knapsack-based model which approaches the optimal solution, whereas ours allows
to reach it using the dynamic programming solution for our resource allocation problem.
In this work we look at this allocation problem as a sharing problem, that is, a problem
from which we have resources to share among multiple users. The SDN controller ensure
the monitoring and the provision of that resources to the end-users ; this controller can
also initiate and manage some cooperation between Infrastructure Providers (IP) to get
the resources matching the users’constraints. It is therefore an optimization or decision
problem that takes as input :

— a set of n applicants. In our context we associate it to the term of user;
— limited common resource (s) ;

—a common language for expressing preferences and preferences of n users on the
resource (s) ;

— a set of constraints on the possible resources to be allocated ;

— an optimization or decision criterion.

As output, we have a resource allocation model, matching the constraints and optimize
the criterion. Note that shared resources can be continuous (split), indivisible, discrete or
mixed, though in this paper, we consider divisible and shareable resources. This means
that a supplier can divide the resources in its basket before sharing them. In this light,
resource allocations can be defined and characterized in the following ways :

Definition 1 : Let be a population P = py,ps, ..., p, of n requests and a set of m
resources R = ry,7r2,... owned by a resource provider. A resource allocation between
these n applicants is a list of n baskets containing the resources R; C R obtained by each
applicant, matching the following properties : U;c, R; = R and Njern R; = ¢

We define the physical infrastructure provider network as an undirected graph G =
(N, L) where N is a set of nodes and L is a set of links. Similarly, the virtual network
of a service provider is defined as a graph @' = (N',L’) in which N’ and L' are the
nodes and virtual links built on the substract network of an InP. Since each resource is
associated with a constraint, at each node n € N we also associate a constraint CN (n)
and with each link I € L a constraint C*(1). These constraints can represent at the level

123

124 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

of nodes, constraints on the portion of resources available for packets process and delay
constraints at the link level.

At the request of a user (see figure 2), the SP submits a request composed of a set of
resources that it wants to get from the InPj. This request consists of a matrix in which
the SP specifies its needs.

]

Resource P S]jg

needs of users allocations allocation All ti —" Available
requests game weation |- Resource &
System DS

wid

Figure 2 — Ressource allocation process.

This matrix defines the SP’s needs (resource and quantity) to satisfy the end users. The
physical InP ensures that requested resource quantities do not exceed the total capacity
available at the physical network level. In all cases, for a set of requests to satisfy accor-
ding to given criteria, a set D = dj,ds, ...,d, of n allocation requests to be satisfied, a
quantity of available resources W € N at time ¢, a quantity p; € N \ {0} of the resource
i wanted through the application d; € D and criteria v; € N \ {0} to optimize when
selecting grant requests to satisfy, the problem can be summarized as :

n
min Z T;iP; @D
=1
or .
max Z ;D ()
i=1
under the constraint :
n
Z zipi <W 3
i=1

where W is the total of available resources.

3.2. Correspondence between knapsack problem and that of
resources allocation

The knapsack problem consists of determining among a set of objects, a selection with
a maximum total value and not exceeding the total permissible weight in the knapsack.
This principle is similar to the resource allocation ones, which consists in finding the
resource price combination that maximizes the supplier’s profits within the limits of avai-
lable resources for a set of expressed demands. That is to say for each resource allocation
problem, there is a knapsack formulation that matches.

Formally, for a set of n demands in resource allocation, we consider a set .S of n ob-
jects with weight p;, > 0 and values v; > 0. We have to find binary variables 1, z2, ..., Z,, €
0,1suchas: > z;.p; < W,and Y ., z;.v; is maximum. For a variable z;, value 1
means the element will be put in the knapsack (ie the resource demand 7 will be supplied)

Dynamic resource allocations in virtual networks through a knapsak problem's dynamic programming solution

and 0 means that it will not be selected.
Generally, some constraints are added to avoid singular cases :

- > . pi > W : We cannot take all the objects (The SP cannot supply all the needs
at the same time) ; that is because in virtual networks, a spare resource must be always
available in the substract network for the network recovery.

-p; < W,Vi € 1,...,n : no object weight could exceed the knapsack capacity (each
resource demand is less than the total capacity of the knapsack ;

—v; > 0,Vi € 1,...,,n : each object has a value and brings a gain (the profit collected
by the supplier for the allocated resources) ;

—-p; > 0,Vi € 1,...,n : any object has a weight (In ressource allocation, there is not
null request).
So, to sort out an allocation resource problem, we can use some solutions of the knapsack
problem like the dynamic programming solution.

3.3. Solving the resource allocation problem using a dynamic
programming solution of the 0-1 knapsack’s problem

The dynamic programming resolution method aims at obtaining the optimal solution
to a problem by combining optimal solutions with similar, smaller and overlapping sub-
problems. Using it involves a recurrent formulation of the problem that will be used to
find the optimal solutions. We proceed as follow :

Decomposition of the problem into sub-problems : Let be M (k,w),0 < k < n and
0 < w < W the maximum cost that can be obtained with objects 1, ...,k of S, and a
maximum load knapsack W (We assume that the p; and w are integers). If we can compute
all the entries of this array, then the array entry M (n, W) will contain the maximum
computing time of files that can fit into the storage, that is, the solution to our problem.
The Cost could be the number of requests or the profit collected.

The recursive equation : Now, we recursively define the value of an optimal solution in
terms of solutions to sub-problems. we have two cases :

— we don’t select the object k : in this case, M (k,w) is the maximum benefit by
selecting among the k& — 1 first objects with the limit w (M (k — 1, w));
— we select the object k : M (k,w) is the value of the object k plus the maximum

benefit by selecting among the k£ — 1 first objects with the limit w — py.
The recursive equation is then :

0 ifi=0
M(k,w) = M(k—1,w) if p; >w)
maz{M(k —1,w),vx + M(k—1,w—pg)} else

This recursive equation result in the dynamic programming algorithm 1 with a space
complexity O(nW). We choose this algorithm to perform a bottom-up computation (see
figure 3), looking for the optimal solution. This bottom-up computation means that the re-
source evaluation values will increase gradually during computations. The horizontal red
arrows show that calculations are made from left to right ; the vertical red arrow shows that
calculations are also done vertically taking into consideration dependency relationships.

Application to resource allocation :

125

126 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Mkw](w=0 | 1| 2| 3| = | | W
k=0 0 0O 0| Of .| ...| O | bottom
1
2 -
n
up

Figure 3 — Bottom-Up Computation principle.

Let us consider a total available resources W = 11 in the network. This resource could
be the bandwidth, the storage space or throughput. We also consider a set of k applicants
with values vy as the number of requests sent, and weight py as the resource quantity
corresponding, as given in table 1. Let us assume that all the requests are about the same
resource type and they arrive at the same time.

k | weight(p) | cost(v;)
1 1 1

2 2 6

3 5 18

4 6 22

5 7 28

Table 1 — Request sets to an InP for 5 simultaneous arrivals.

Looking for the optimal solution (the maximum requests satisfied by the InP which
have resources) with the bottom-up computation, we obtain table 2. M is the different
amounts of available resources. Each n-uplet {a;1, a;2, ...a;, } represents the fact that the
element a;, have dependencies with the previous elements a;1, a2, ...a;n—1 ; this means
that according to the recursive equation 4, the resource computation for a;,, is linked to
those of a;1, a;o, ... and a;,—1. For example, to obtain the cost for M[4, 11] which is also
written {1,2,3,4}, the computations made are :

M[4,11] = maz{M[4—1,11],v4+M[4—1,11—p4|} = maz{M]3,11],22+M[3,11—
6]} = maxz{25,22 + 18} = max{25,40} = 40

M 0|1|2|3/4| 5| 6| 7| 8| 9|10 11

0 0jojojoj0f 0O 0O O] Of O] O] O

{1} o(1 111 1} 1 1] 1 1| 1] 1
{1,2} o(1y6 77| 7| 77| 77| 7| 1
{1,2,3} 0167 |7 |18|19 |24 |25|25|25|25
{1,234}y |0 | 1|6 |7 |7 |18 22|24 |28|29 |29 |40
{12345} |0 | 1|6 |7 7|18 |22|28|29|34|35]|40

Table 2 — Bottom-up costs evaluation.

Table 2 shows that the maximum request numbers could be up to 40 UoC (Unit of
Cost) with this example. Then, the optimal solution is {4,3} based on algoritm 1 and the
applicants number 3 and 4 would be satisfied by the InP firstly ; the provided resources
will be used during a time before they are allowed to other applicant. Within this period of
time, other applicant requests are saved in a waiting mode. When the previously allocated

Dynamic resource allocations in virtual networks through a knapsak problem's dynamic programming solution

resources are totally or partially released, other applicant requests could be satisfied. For
each allocation game, the dynamic programming solution is used with various data at
different times. This allocation process is presented in figure 4.

Users
(arrival time, Running time) | Time

0 1 2 3 4 5 6 7 8 9 10 1 12

c

1(0,
2(
3
4(
5(

c
@

c c

0
0
0
0

L2y s

c

Waiting time
mm Running time

Figure 4 — Gannt chart for a set of five applicants for resources.
Depending on the objectives targeted by the InP (maximizing the number of requests

fulfilled, maximizing the economic benefit derived from the allocation of resources), the
previous example can be adapted.

4. Conclusion

In this paper, we have presented a knapsack-based dynamic resource allocation model
that allows Infrastructure Providers (InP) in a network virtualization environment to select
the most suitable users’requests meeting the aims of this InP. Our aim was to provide an
efficient decision mechanism to face challenging difficulties encountered by the InP with
the multiple requests of end-users or Service Providers. We propose a solution based on
a knapsack dynamic programing solution to choose the most suitable users to satisfy. We
managed dynamic allocations as multiple simple resource allocation instances occuring
at different times.

In an upcoming future, we intend to work on a decision mechanism taking into consi-
deration important constraints as the fidelity of the user to an InP. It would not be suitable
that a new customer, even providing a good profit to an InP, is chosen in replacement of
an older and regular customer.

5. Bibliographie

[1] Jain, Raj, Paul, Sudipta, « Network virtualization and software defined networking for cloud
computing : a survey », Mobile Networks and Applications, Vol. 51, N° 11, p. 24-31,2013.

[2] Niebert, Norbert, El Khayat, , Baucke, Stephan, Keller, Ralf, Rembarz, René, Sachs, Joachim,
« Network virtualization : A viable path towards the future internet », Wireless Personal Com-
munications, Vol. 45, N° 4, p. 511-520, 2008.

[3] N.M. Mosharaf Kabir Chowdhury, RRaouf Boutaba, « A survey of network virtualization »,
Elsevier, IEEE, Vol. 54,p. 862-876, 2010.

[4] Haider, Aun and Potter, Richard and Nakao, Akihiro, « Challenges in resource allocation in
network virtualization », 20th ITC Specialist Seminar, Vol. 18, N° 2009, 2009.

127

128 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

[5] Mohamed Said Seddiki, « Allocation dynamique des ressources et gestion de la qualité de
service dans la virtualisation des réseaux », PhD thesis, Université de Lorraine, 2015.

[6] Amraoui, Asma and Benmammar, Badr and Krief, Francine and Bendimerad, Fethi Tarik, « Né-
gociations a base d’Encheres dans les Réseaux Radio Cognitive », Nouvelles Technologies de
la répartition-Ingénierie des protocoles NOTERE/CFIP 2012, 2012.

[7]1 Zhu, Yong and Ammar, Mostafa H, « Algorithms for Assigning Substrate Network Resources
to Virtual Network Components », INFOCOM, Vol. 1200, N° 2006, p. 1-12, 2006.

[8] Popek, G. J., Goldberg, R. P, « Formal requirements for virtualizable third generation architec-
tures », Communications of the ACM, Vol. 17, July, 1974.

[9] Fischer, Andreas and Botero, Juan Felipe and Beck, Michael Till and De Meer, Hermann and
Hesselbach, Xavier, « Virtual network embedding : A survey », IEEE Communications Surveys
& Tutorials, Vol. 15,N° 4, p. 1888-1906, 2013.

[10] Kreutz, Diego and Ramos, Fernando MV and Verissimo, Paulo Esteves and Rothenberg,
Christian Esteve and Azodolmolky, Siamak and Uhlig, Steve, « Software-defined networking :
A comprehensive survey », Proceedings of the IEEE, Vol. 103, N° 1, p. 14-76, 2015.

[11] Kim, Hyojoon and Feamster, Nick, « Improving network management with software defined
networking », [EEE Communications Magazine, Vol. 51, N° 2, p. 114-119, 2013.

[12] Morimoto, Naoyuki, « Power allocation optimization as the multiple knapsack problem with
assignment restrictions », Network of the Future (NOF), 2017 8th International Conference on
th, p. 40-45,2017.

A. Knapsack dynamic programing algorithm

Algorithm 1 provide the optimal solution on a set of objects for the knapsack problem,
and also indicates which subset gives this optimal solution. From line 1 to 15, we compute
the maximum requests to satisfy. From line 16 to 21, the algorithm select the applicants
to provide with resources.

B. A practical example of resource allocation with succeeding
request arrivals of 8 applicants to the InP

In this example, we suppose that the applicant requests reach the InP at different times.
So, those requests are satisfied successively. When new requests occur from another ap-
plicant, preceding allocated resources can be divided to provide the other ones.

let us assume a total available resources W = 10 in the InP network. We also consider
a set of k applicants with values vy, as in the previous example, as given in table 3. Let
us assume that all the requests are concerned with the same resource type and they arrive
successively according to time.

We suppose that requests from the applicants number 1, 2 and 3 come first. The com-
putation of the maximum satisfied requests will be 70 UoC (see table 4). This means that
the optimal solution is {3,4}. In case of competition, applicants 3 and 4 would be selected
before the others.

When other applicant requests will reach the InP, another computations will be made
to choose the most suitable user to provide with resources. Table 5 illustrates the computa-
tions done for the requests coming at the time 6, and result in a maximum of 110 requests
that could be satisfied by the InP. The applicant numbers 1 and 2 correspond respectively
to numbers 3 and 4 in table 3.

Dynamic resource allocations in virtual networks through a knapsak problem's dynamic programming solution

Algorithm 1: knapsack

Data: p,v,n,M
Result: A maximum benefit on objects p

1 Let M[0..n,0..W] be a new table ;
2 Let z[1..n] be a new table ;

3 begin

4 for w =1to W do

5 | M[0,w]=0;

6 for k =1tondo

7 | Mi[k,0]=0;

8 for k =1tondo

9 for w =1to W do

10 if p[k] > w then

11 | Mk,w] = M[k—1,uw];

12 else if M[k —1,w] > v[k] + M[k — 1, w — p[k]] then
13 | Mlk,w] = M[k—1,uw];

14 else

15 | Mk, w] = v[k] + M[k — 1,w — p[k]];
16 L

17 w_=W;

18 for k =ntoldo

19 if M[k,w] == M[k — 1,w] then

20 | z[k] =0;

21 | else z[k] = 1;w =w — p[k];

22 return z ;

k | weight(pg) | cost(v;) | Arrival time
1 5 10

2 4 40 0

3 6 30

4 5 50 6

5 4 60

6 3 80 13

7 5 20 16

8 7 30

Table 3 — Request sets to an InP for 8 applicants.

129

130 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

M |0|1|2|3]| 4| 5| 6| 7| 8| 9|10

0 {ojo{o|O] O] O O] O] O] O| O
{1}y/0{0|0(0| O|10|10|10|10]| 10|10
{2 10| 0| 0|0 |40 |40 |40 |40 |40 | 50 | 50
{3 {0|{0|0]|0]|40 |40 |40 |40 |40 | 50 | 70

Table 4 — Bottom-up costs evaluation with applicants coming at the time 0.

M |01 2| 3| 4 5 6 7 8

O |0j0] O] Of O 0 0 0 0
{1} {0|0| O|50|50| 50| 50| 50| 50
{2100 60|60 60| 110 | 110 | 110 | 110

Table 5 — Bottom-up costs evaluation with applicants coming at the time 6.
with regards to what is stated above, the results of table 6 are obtained for applicants
number 7 and 8 coming at the time 16.

M|{O0O|1|2|3|4] 5| 6| 7| 8| 9
plojojofoO|O| O O] O] O O
1 |10/0(0[0|0[20({20]20]20]20
2 |0|0|0O|O|O| O O]30]30]30

Table 6 — Bottom-up costs evaluation with the applicants coming at the time 16.

Gant chart of the figure 5 presents the resource allocation order of all different appli-
cants, mapping with their requests. It considers that the running time of each applicant is
proportional to its weight py.

Users
(arrival time, Running time) | Time

1112131415161718192021222324 2526 2‘728
N M N I
I O B O B

U1(0,5) ‘ —

U2(0,4) I

U3(0,6)

ua(6,5) L]

Us(6,4) I
U6(13,5) |
U7(16,5) S
U8(16,5) |

Waiting time
mm Running time

Figure 5 — Gannt chart for 8 sequential arrivals.

C. An enhanced example of resource allocation with 24
applicants and 150 UoC of resources to the InP

In this example, we enhance the resource allocation scenario presented in appendix B.

Dynamic resource allocations in virtual networks through a knapsak problem's dynamic programming solution 131

let us assume a total available resources W = 150 in the InP network. We also consi-
der a set of kK = 24 applicants with values vy, as given in table 7. The column A.t. (¢) is the
arrival time represented as ¢. Let us assume that all the requests are concerned with the
same resource type and they arrive successively according to time ¢. Such configuration
provide a maximum of 420 satisfied requests with the following provision scheme for the
users at t = 0 : users’ requests 2, 3 and 5 will be satisfied firstly, then users 4 and 1. In
the same way, at time ¢ = 20, users’ requests 11 and 13 will be satisfied before 12, resul-
ting a maximum requests number of 808. At ¢ = 30, the maximum satisfied requests is
543 and the resource allocation process will consider the users 18 and 19 before user 20.
These maximum satisfied requests are computed using the algorithm 1. In each period of
the allocation process, this maximum request number can be increased with the running
requests of the preceding period. The Gannt chart is provided by the figure 6.

k | weight(pg) | cost(v;) | At. () || k | px v; |AL @) || k | p v; | At (t)
1 103 200 9 | 62 | 120 18 17 | 90 | 210 27
2 30 101 10| 45 | 138 18 | 16 | 187

3 54 174 0 11 | 35 | 350 19 | 107 | 356 30
4 101 250 12 | 92 | 670 20 20 | 88 | 231

5 46 145 13 | 110 | 750 21 | 42 | 199 33
6 22 80 13 14 | 63 | 680 21 22 | 61 | 225

7 6 20 16 15| 102 | 110 23 23 | 115 | 165 38
8 14 30 16 | 87 | 220 25 24 | 84 | 194

Table 7 — Request sets to an InP for 24 applicants.

Users

(amrival time, .
Running time) Time

02 73 %3¢ 78 91011020310151607 3810 2021222330 3526 272829 303132333435363738394D4142434445

(07 LA L e e Y Y O O O Y B
qunslil

us(o,7) ——

U4(0,6.5)

Us(o,9)

U6(13,3) I

u7(16,2) —

Us(16,3) —

Us(18,8.2)

U10(18,7)

u11{20,3.1) S

U12(203.2) ——

U13(205.1) ——————————

u14{21,7)

u15(2387)

U16(25,4.6)

U17(27.5) ——

U18(30,2.8) I

U19(30,7) ——
U20(30.2.5) ——

u21(33,4) —

u22(33.5)

e =

Waiting time

= Running time

Figure 6 — Gannt chart for 24 sequential arrivals.

