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RESUME. Nous considerons un modéle qui décrit la dynamique de linfection du VIH et, qui tient
compte des transmissons virus-cellule et cellule-cellule, de la réponse immunitaire. Ce modéle in-
clut quatre retards continus qui décrivent respectivement: la latence pour linfection virus-cellules,
l'infection cellule-cellule, la production de nouveaux virions et I'activation de la réponse immunitaire.
Quelques innovations de ce modele sont I'inclusion d’un taux de production des cellules CTL issue du
thymus et du retard d’activation de la reponse immunitaire. Nous déterminons le taux de reproduction
de base R( et montrons que la dynamique global est completement déterminé par la valeur de Ro.
Nous montrons que si Ro < 1 alors l'infection peut étre éliminé ; alors que si Ry > 1, il existe un équi-
libre endémique, et, le systéme est persistent. Des simulations numériques indiquent que les retards
intracellulaires et le retard de la réponse immunitaire peuvent stabilisé et/ou destabilisé I'équilibre
endémique.

ABSTRACT. We consider a mathematical model that describes a viral infection of HIV-1 with both
virus-to-cell and cell-to-cell transmission, CTL response immune and four distributed delays, in which
the first, second and fourth distributed delay respectively describe the intracellular latency for virus-to-
cell infection, the intracellular for the cell-to-cell infection and the time period that viruses penetrated
into cells and infected cells release new virions, and the third delay describes the activation delay of
CTLs cells. One of the main features of the model is that it includes a constant production rate of
CTLs export from thymus, and an immune response delay. We derive the basic reproduction number
Ro and establish that the global dynamics is completely determined by the values of Ro. We show
that if Ro < 1, then the infection free equilibrium is globally asymptotically stable, meaning that HIV
virus can be cleared ; whereas, if Ro > 1, then there exist a chronic infection equilibrium, and the
HIV-1 infection will persist in the host. Numerical simulations indicate that the intracellular delays and
immune response delay can stabilize and/or destabilize the chronic infection equilibrium.

MOTS-CLES : Dynamique viral, Retards continus, Réponse immunitaire, Persistence

KEYWORDS : Viral dynamics, Distributed delays, CTL immune response, Persistence

13



14  CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

1. Introduction

Over the recent years, great efforts have been paid in mathematical modeling of within-
host virus dynamics. Mathematical models and their analysis are helpful in understanding
the dynamical behavior of many human viruses such as HIV, HTLV-I and HBV (e.g.,
[2, 3,4, 5, 6, 8]). Recently, it has been reported that the uninfected cells can also become
infected because of direct contact with infected cells. The viral infection model with cell-
to-cell transmission and distributed time delay have been proposed in [2, 3, 6, 7]. They
observed that the basic reproduction number of their model might be underevaluated if
either cell-to-cell spread or virus-to-cell infection is neglected.

Note that the immune response after viral infection is common and is necessary for
eliminating or controlling the disease. In most virus infections, cytotoxic T lymphocytes
(CTLs) play a critical role in antiviral defense by attacking virus-infected cell. Many exis-
ting mathematical models for HIV infection with CTLs response are given by systems of
ordinary differential equation (ODE) (see, e.g. [2, 4, 5, 6, 8]). However, time delays can
not be ignored when modeling immune response, since antigenic stimulation generating
CTLs may need a period of time, that is, the activation rate of CTL response at time t
may depend on the population of antigen at a previous time [8]. Moreover, all the afore-
mentioned works not take into account of the constant production rate of CTLs exported
from thymus. This consideration of export rate of new CTLs from thymus is considered
in [4, 5] and is ignored by many authors.

Motivated by the works in [4, 7], in the present paper, we are concerned by the effect
of both virus-to-cell and cell-to-cell transmissions with intracellular delays, and immune
response activation delay on the global dynamics of HIV-1 infection model. We consider
a within-host viral infection model with both virus-to-cell and cell-to-cell transmissions,
immune response and four distributed delays, in which the first, second and fourth delay
respectively describes the intracellular latency for virus-to-cell infection, the intracellular
latency for the cell-to-cell infection and the time period that viruses penetrated into cells
and infected cells release new virions [7], and the third delay describes the activation de-
lay of CTLs cells ([8]). The rest of the paper is organized as follows. In Section 2, the
mathematical model is constructed, the preliminaries including the positivity and boun-
dedness of solutions are introduced, the existence of an infection-free equilibrium and
its global stability are obtained, the existence of a chronic infection equilibrium and the
persistence of infection are also obtained. In section 3, numerical simulations for several
cases of the main model are presented. Section 4 concludes the paper.

2. The model formulation

The compartmental model includes the concentrations of healthy target cells T'(¢)
which susceptible to infection, infected cells T; (%) that produces viruses, cytotoxic T lym-
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phocytes (CTLs) cells T¢.(¢) which are responsible of the destruction of infected cells and
viruses V'(t). Let 5, be the virus-to-cell infection rate, S be the cell-to-cell infection
rate, d, p1, o and c be death rates of healthy target cells, activated infected cells, cyto-
toxic CTLs cells and viruses, respectively. Let b be the production rate of healthy target
cells, A be the production rate of CTLs cells export from thymus, a be the prolifera-
tion rate of CTLs cells. Infected cells are eliminated by CTLs cells at a rate g, which
represent the lytic activity of CTLs cells. e™#151 is the survival rate of cells that are
infected by viruses at time ¢ and become activated s; time later with a probability distri-

oo
bution f1(s1). Then [ 1T (¢t — s1)V (¢ — 51) f1(s1)e™#151ds; describes the newly acti-
0
vated infected target cells which are infected by free viruses s; time ago [7]. Similarly,
[ee]
J Bo2T(t — s2)T;(t — s2) f2(s2)e#152ds, represents the newly activated infected target
0

cells which are infected by infected cells so time ago [7]. e #2%3 is the survival rate of

CTLs cells that are activated at time ¢, and become cytotoxic s time later with a proba-
o

bility distribution f3(s3). Then, [ aT;(¢t — s3)T,(t — s3) f3(s3)e #2%3ds3 represents the

newly CTLs cells proliferated at time ¢ [8]. Let s4 be the random variable that is the time
between viral RNA transcript and viral release and maturation with a probability distri-

o0
bution f4(s4). Then, f ET;(t — s4) fa(sa)e#35+ds, describes the mature viral particles
0

produced at time ¢ [7]. k is the average number of viruses that bud out from an infected
cell and e~ #3%4 is the survival rates of cells that start budding from activated infected
cells at time ¢ and become free mature viruses s4 time later. Note that s1,s5, s3 and s4 are
all integration variables, without loss of generality, they all will be represented by s. The
model is given as follows :

(T2 = b= 0T~ BTV — BT,
d’l;;;t(t) = {/BlT(t - S)V(t — s)fl (5)6_”15ds
+ [ BT (t = $)Ti(t = 5) fa(s)e™1ods — T —qTT. 5
0
LB = Xta J Tt = 8)T.(t =) o(s)e+ds —oT.
O =k [ Tilt = s)fa(s)emrovds — e,

fi(v) : [0,00) — [0, 00) are probability distributions with compact support, f;(v) > 0,
and [[° fi(v)dv=1,i=1,...,4.

From the modeling perspective, the model (1) extends the basic model developed in
[4] by : (i) incorporating the cell-to-cell transmission, (ii) intracellular delays and (iii)
immune activation delay. Together with this latter improvement (iii), the incorporation
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of a constant production rate of CTLs export from thymus in our model also extend the
works in [2, 6, 8]. It is also noticeable that, our model extends the models developed in
[3, 7] by including CTL response immune delay.

2.1. Preliminaries

Define the Banach space of fading memory type (see [3, 7])
C = {¢ € C((—0,0]|$() e"? is continuous for § € (—oo,0] and ||§|| < co} where p
is positive constant and the norm ||¢|| = supy<, |#(6)| €. The nonnegative cone of C is
defined by C; = C((—00,0],Ry). For ¢ € C, Let ¢.(0) = ¢(t + 6), 0 € (—o0,0]. We
consider solutions (T, T;, T, V') of system (1) with initial conditions

(T(0), Ti(0), Tc(0), V(0)) € X :=Cy x C1 x C4 X Cyp. ()
By the standard theory of functional differential equations, we can obtain the existence
of solutions for ¢t > 0. Let ; = f0°° e~Ms fi(s)ds, i = 1,2, m3 = f0°° fs(s)er3sds,
= J5 fa(s)e#4*ds.
Theorem 2.1 Solutions of system (1) with initial conditions (2) are positive and ultima-
tely uniformly bounded fort > 0.
Proof 2.1 The proof of Theorem 2.1 is given in Appendix A. O

Theorem 2.1 implies that omega limit sets of system(1) are contained in the following
bounded feasible region :

b A
a-{@nn.vyects 1< ml <, 2 <7< S, vl <}

It can be verified that the region €2 is positively invariant with respect (1) and the system
is well posed.

2.2. The infection-free equilibrium and its stability
2.0). We defined the basic

Y o?

System (1) has an infection-free equilibrium Ey = (%, 0
reproduction number as follows :

k B1bm1 s n B2bne
C5(H1+%) 5<M1+%)7

which represents the average number of secondary infections. In fact, ;‘(3;;’74_”{52“) is the
1T

average number of secondary viruses caused by a virus, that is the basic reproduction
number corresponding to virus-to-cell infection mode, while - 521"3 is the average
17

Ro=TRo1 +Roz2 =

number of secondary infected cells that caused by an infected cell, that is the basic re-
production number corresponding to cell-to-cell infection mode. The factors have the
biological interpretations as follows :
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- ﬂy’i is the number of new infections caused by a virus in target susceptible cells ;

- % is the rate at which infected cells are eliminated by the CTLs response ;

_ ﬁ is the average time that an infectious cell survives ;
1 (7

— kny is the rate at which infected cells bud into viruses ;
1 . . . . .
— . is gives the average life-span of a virus ;
- :B—j’f_y represents the number of new infections caused by an infected cell in target
1 [e3
susceptible cells.
The result below follows is straightforward.

Theorem 2.2 The infection-free equilibrium Eq of system (1) is locally asymptotically
stable in the feasible region Q) whenever Ry < 1 and unstable otherwise.

Proof 2.2 The characteristic equation of system (1) at the equilibrium Ey is

vrowra)|wro(vem+ 2 P) Bhug] 0 o

where 7j; = [° e (14 fi(s)ds, i = 1,2, 7y = [;° e~ (22 fa(s)ds and 7, =

f0°° e_("3+”)sf4(s)ds. We see that (3) has eigenvalues vy = —6, vy = —a and other
eigenvalues are determined by (v + ¢) (1/ +p1 + % - bﬁ%) - kbgiﬁlm = 0, which

equivalent to

v Mo Ro2 M2 Roz2 ﬁ1ﬁ4R01)
U(v) = +1](v+e)—R v+c +c =0. 4
) (Ml 2 ) w+e)-Ro ( n2Ro n2Ro mnaRo @

Thus, ¥(0) = c¢(1 — Ro) < 0 when Ry > 1. Note that j; < fooo fi(s)ds = 1,1 =

1,2,3,4. Then, we have ¥ (v) > (ﬁ_y + 1) (v+¢)—Ro (My +cR2 4. Ra ) s
17T

n2Ro n2Ro MmnaRo
~+00 as v — +o0. This yields that equation (4) has at least one positive root. Therefore,
the infection-free equilibrium Ey is unstable if Ry > 1. O

Biologically speaking, Theorem 2.2 implies that infection can be eliminated if the
initial sizes of cells are in the basin of attraction of the infection-free equilibrium. Thus,
the infection can be effectively controlled if Ry < 1. One can remark that R depends
on A and is a decreasing function of this rate. Hence, the constant rate A could be an
important control parameter in order to reduce R to a value less than unity. To ensure
that the effective control of the infection is independent of the initial size of the cells, a
global stability result must be established for the infection-free equilibrium.

Theorem 2.3 If Ry < 1, then the infection-free equilibrium Ey of system (1) is globally
asymptotically stable in ).

Proof 2.3 The proof of Theorem 2.3 is given in Appendix B. O
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2.3. The chronic infection equilibrium and persistence of infection

In this section, we will show that there exists a chronic infection equilibrium and the
model (1) is persistent when Ry > 1. The infection is endemic if the infected cells persist
above a certain positive level.

Denote by E* = (T*,T;, Tz, V*) the chronic infection equilibrium of system (1).
Then

T = b T =

5+(61+"2C)V*’ N

kns

v kbBimna + bfanac — cu1d — ey (51 + ff,i) Ve
ac(5+pve+ f2ve)

7(;_ })

5)
where V* is a positive root of A + ansT; Ty — oIy = 0 (). After expansion and
substitution of T™*, T;*, T by their expressions, Eq. (x) is equivalent to polynomial
P(V) = a3V? + a1V + ag = 0, with the coefficients as, a; and ag given by

w0 = =g (B i)
2
a; = ansc” i § skcm — ansbe (ﬁl’r]l + —Tl—;nz ) (ﬁl + f_f;) (p1ca + gAc), ©)
a = cda (,ul + %) (Ro — 1).
Using T, > 0 one shows that V' < V44, Where V0, = kbﬁlm’““&’”c omd =

cp1 (51 +50; )
cp18(Ro—1)+Ro <242
cp1 (51 + %f)
P(0)P(Vypgp) = —bra(hB ”’”’4“3 212¢) < 0. Since P is continuous and strictly de-
creasing on interval ]0; Vmaz[ the intermediate value theorem implies that P vanishes
on ]0; Vpaz[, which proves the existence and uniqueness of a positive chronic infection
equilibrium when Ry > 1.
In the following, we will shows that the model (1) is persistent when Ry > 1. To
achieve our goal, we will apply Theorem 4.2 in [1]. To this end, let S(¢), t > 0, be the
solution semiflow of model (1), we can prove the following persistence result for (1).

> 0, since Ry > 1. Using P(0) and P(Vynas) one shows that

Theorem 2.4 For system (1), if Ry > 1, then the solution semiflow S(t) is uniformly
persistent ; that is, there exists a o > 0 such that any solution of (1) satisfies

lim infT'(¢) > o, lim infT;(¢) >0, lim infT.(t) >0, lm infV(t)>o.
t—o0 t—o0 t—00 t—o0

Proof 2.4 The proof of Theorem 2.4 is given in Appendix C. O
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3. Numerical simulations

In this section, we perform numerical simulations for the model (1) with particular
distribution functions f;(s), ¢ = 1,2,3,4 as : fi(s) = fa(s) = d(s — s1), fa(s) =
d(s — s3) and f4(s) = 0(s — sa), where §(-) is the dirac delta function, s;, ¢ = 1,2, 3,4
are positive constants. Then, we can see that 17, = 1y = e #1%, 3 = e #2°3 and
Ny = e~ #3%4_ 'We examine the behavior of the infected steady state £* using data sets that
are commonly used in the literature [4, 6, 7]. Values of parameters are defined as : b = 10,
0 =001,5 =26—6,8, =3¢—4,u1 =01,a =3e—2,qg =2 —4, k =100,
a=0.02c=32 A=1, uy =0.5 and u3 = 0.1. By simple computing, the persistence
of the infection when Ry > 1 as demonstrated in Theorem 2.4 is numerically shown on
Figure 1.

3.1. Effect of CTLs constant production rate

In order to investigate the effect of CTLs production rate, we carry out some numerical
simulations to show the contribution of CTLs constant production rate during the whole
infection. We set the production rate A as 0.5, 1, 1.5, 2. We choose s1 = s = 3,53 =8
and s4 = 2.5. From the four figures of Figure 1, we can observe that uninfected and CTLs
cells reach a higher peak level as A increases. While, the peak level of infected cells and
viruses decreases as A increases. If we interpret the constant rate A > 0 as an inflow of
antiviral drugs, one can observe from Figure 1 that the entry of antiviral drugs into the
host is important as a control parameter in order to reduce the viral load.

3.2. Effect of intracellular delays and immune response delay on
the stability of steady states

In this case, we choose s; = 2.5 and without loss of generality, we let S = s; = so.
Figure 2 plots the chronic infection equilibrium E* when S varies and s3 = 5 is fixed
(left column), and when s3 is varied and S = 3 is fixed (right column). This figure de-
monstrates that the chronic equilibrium destabilizes as S and s3 decreases. Therefore, an
increase in the intracellular delay S or the immune response delay can stabilize the in-
fected steady state E*. In the instabilities cases, one observe oscillation patterns where
a larger viral peak is generated before the viral load and the infected cells dynamics are
"trapped" by the invariant plan T; = V = 0. These transient viral peaks strongly re-
semble viral load blips clinically observed in HIV-infected patients, and they provide an
alternative interpretation of these phenomena. This result is consistent with the study in

[4].
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4. Conclusion

In this paper, we have investigated the dynamical properties of a delayed HIV-1 in-
fection model with both virus-to-cell and cell-to-cell transmissions, and CTL immune
response delay. This model extends some previous models and also take into account of a
rate of CTLs cells exported from thymus. We have derived the basic reproductive number,
Ro, which depends on % (it is the rate at which infected cells with virus are eliminated
by the CTLs response), that can contribute to the control of viral infection. When the
basic reproductive number Ry is less than unity, we have proved the global asymptotic
stability of the disease free equilibrium Ey. When the basic reproductive number R is
greater than unity, the persistence of the chronic infection equilibrium E* has been obtai-
ned. It is challenging to analyze model (1) for the joint effect of four delays theoretically.
So, numerical simulations were used to further investigate the infected steady state and
the existence of the Hopf bifurcation when s; > 0, i = 1,2, 3,4. Notice that the exis-
tence of the Hopf bifurcation contributes at the emergence of viral load blips which is
clinically observed in HIV-infected patients. It was found that the intracellular delays and
immune response delay can stabilize and/or destabilize the chronic infection equilibrium
(see Figure 2).
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Figure 1 — Simulation results showing the effect of A on the dynamics of the model with
81 =89 = 3,83 = 8and s4 = 2.5.

Appendix A : Proof of Theorem 2.1

Let m(t) = 0 + B1V(t) + B2T;(t) and d(t) = p1 + ¢T.(t). Let r(t) be the sum
of the two integral terms in the second equation of system (1) and n(t) be the inte-
gral term in the fourth equation of system (1). From the first equation in (1), we then
have T(t) = T(0)e~Jo m(©4d¢ 4 fg e JemO®pge . 0 for t > 0. From the third
equation in (1), it follows that tli)rgo inf T.(t) > % > 0. From the second and fourth
equation in (1), we then have T;(t) = T;(0)e™ fo 4O% 4+ [“r(€)e” J¢ d©)d6 3¢ anq
V(t) = [V(O) + Jt n(g)ecﬁdg] e=¢t, which yield that T;(£) > 0, V(¢) > 0 for small
t > 0. Now we prove that T;(¢t) > 0 and V' (¢) > 0 for all t > 0. Otherwise, there exists
t1 > 0 such that min{T}(¢,), V (t1)} = 0. If Ty(t1) = 0, Ty(t) > 0for 0 < t < t1, and
V(t) > 0for 0 <t < t;, then we have dT:i—(ttl) > 0. This contradicts T;(t;) = 0 and
Ti(t) >0for0 <t <. fV(t1) =0,V(t) >0for0 < ¢ < ¢y, and T;(¢) > 0 for
0 <t < t;, then we obtain %(ttl) > 0, which is also a contradiction. Hence, T;(t) > 0
and V(t) > 0 forall ¢t > 0.

To prove boundedness, first by the positivity of solutions we have %ﬁt) < b-
ST (t). It follows that lim; o, supT(t) < %, implying T(t) is bounded. Let G1(t) =
IS fi(s)e™ 5T (t — s)ds + [;° fa(s)e 5T (t — s)ds + T;(t). Since T'(t) is boun-
ded and f0°° f(u)du is convergent, the integral in G(t) is well defined and differentiable

21
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with respect to t. Moreover , when taking the time derivative of G(¢) , the order of the
differentiation and integration can be switched. Thus, we have

i) = dm+m) -3 [ " fi(s)e Tt — s)ds — / " fa(s)emoT(t - 5)ds
0 0
—.Usz' - qTiTc,

b(m +m2) — 0 /0"" fi(s)e ™ 5T (¢t — s)ds — & /0 b fa(s)e M5T(t — s)ds

IN

- (ul + %) T(t) < bim +m) — diGa(8),

where d; = min {(5, 1+ %} Therefore, tlim sup Gi(t) < b("ii—i”’?) := M, implying
—00
that tli)m sup T;(t) < M;. Then, from the fourth equation of system (1), we have
oo

V(t) = k/ e M fu(s)Ti(t — s)ds — cV < kMiny — cV.
0

Thus, tli)m supV(t) < %c“ﬂ := Mj,. Now determine the upper bound of T,(t). Let
o0
Ga(t) = [y° fa(s)e 25 Ty(t — s)ds + 1T, (t). Thus, we have

Colt) = /0 " h(8)e 1t — 8)ds — i /O  f(8)e Tyt — 5)ds + % ~alr),

b A *
< %(ﬂﬂhMQ + BanaM1) + % - “1/ fa(s)e " Ti(t — s)ds — a%TC(t)’
0
< dy —d3Ga(t),

where dy = b%(ﬁmle + Bane M) + % and d3 = {a, p1 }. Hence, tliglosquQ(t) <
g—z := M3, implying that tli)xgo sup Te(t) < ¢Ms. Thus, T'(t), T;(t), Te(t) and V (t) are
uniformly bounded. O

Appendix B : Proof of Theorem 2.3

We define a Lyapunov function as follows :

o0 t e
bﬁlghw /0 fi(s)eme /t_sﬂlT(r)V(r)dde /0 Fals)e™

L = T
® + 2

e} t
bBrm / f4(s)e_“35/ kT;(7)drds.
cd 0 t—s

/t BT (1)T;(7)drds +
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Effect of intracellular delays for s,=5, s,=2.5 and S=s =s, varying Effect of immune response delay for S=s =s =3, s,=2.5 and s, varying
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Figure 2 — Simulation results showing the effect of S and s3 on the dynamics of the model.
Then the time derivative of L(¢) along solutions of system (1) satisfies

dL(t kb b
% = BTV + BomTT; + %Ti — i — qIiT, — %V

Since T < 2 and T. > 2, we have

dL(t b kb, A A
() < Ban2 n Primna w7 = (i + 2 (o - 1)
dt 6 cd a e

%ﬁt) < 0 whenever Ry < 1. Moreover, dflgt) =0T;,=V=0o0rT = %,TC = %and
Ro = 1. Thus, the largest invariant set H such as H C {(T, T;,T., V) € ]R‘j_ %Et) = 0}
is the singleton {Ey}. By LaSalle’s Principle, Ey is globally asymptotically stable in €2,
completing the proof.

Appendix C : Proof of Theorem 2.4

Let D° = {¢ = (¢1, ¢z, ¢3,$4) € X : ¢2(6) > 0 or ¢4(9) > 0, forall § € (—o0, 6]}
and Dy = X \ D°. We just need to verify the conditions (i) — (vii) of Theorem 4.2 in [1].
It is easy to verify that X = D°U Dy, D°NDy = @, and S(t)D° C D°, S(t)Dy C Dy for
all ¢ > 0. Furthermore, from Theorem 2.1, we know that S(¢) is point dissipative in X.
Notice that the boundedness of each component does not depend on the initial condition
(2). Thus, for any bounded set Y in X, the positive orbit y*(Y) = |J S(¢)(Y) through

t>0

Y C X is bounded in X. In view of this property, S(t) is asymptotically smooth, that is,
for any nonempty bounded set Y C X with S(¢)Y C Y, there is a compact set Yo C Y
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such that Yj attracts Y. Let Ay be the global attractor of S(t) restricted to Dy. We have

A= U w(z) = Ey. {Ep} is a compact and isolated invariant set. Thus, the covering
z€EAQ
is simply { E }, which is acyclic because no orbit connects Ej to itself in Dy.
Next, we will verify that W*(Ey) D = (. To this end, we suppose the opposite, that

is, there exists a solution u; € DV such that lim T'(t) = %, lim T;(¢) =0, lim T.(t) =
t—o0 t—o0 t—o00

ﬁ, tllglo V(t) = 0. Note that Ry > 1 is equivalent to % [’“Bl—zl’“ + [32172] > p1 + qa—’\.

For a small enough ¢ > 0, we have (% —€) [kﬂl—zl"“ + 62172] >y + ‘{1—’\ (%) For this

€, there exists a 79 > 0 such that T'(¢) > % — e for all ¢ > 7. Truncating the integral of
71, N2 and 1y in (*x), there is another 71 > 0 such that

(% - e) [m + 52772] >+ %, @
where 7; = [ e™"° fi(s)ds, i = 1,2, and 7y = [ fa(s)e™H2°ds. Let p, = 70 + 71,
Then, for t > 75, we have
a > ;fl,BlT(t —S)V(t— ) fi(s)etrods + ;fl,BgT(t — S)Ti(t — ) fals)e°ds
- (Ml + %) T;
> (% —€) [:{1 BV (t — s)fi(s)e M15ds + ;flﬁzTi(t — s)fg(s)e_“lsds] — (Ml + ‘Ia—’\) T;.
This suggests the following comparison system for (T;(¢), V (¢)) :
ur(t) = (2 —¢) [?ﬂﬂm(t — 8)f1(s)e 1%ds + ?ﬂwl(t - s)fQ(s)e_’“sds]
— (1 + 2) w0,
ia(t) = k ;flul(t — ) fa(s)e s — cus(t), for t>s.
®

Notice that this is a monotone system, and by the comparison theorem and the equations
lim T;(¢t) = 0 and lim V'(¢) = 0, one should have lim (u;(t),u2(t)) = (0,0). On the
t—o0 t—o0 t—o0

other hand, the two equations for u; (¢) and uy(t) are in the same forms of the second and
fourth equations in system (1). Repeating the same argument for proving the instability of
Ey in Theorem 2.2 and replacing the condition Ry > 1 by (7), we conclude that the cha-
racteristic equation of system (8) has a positive real eigenvalue, which is a contradiction
to tliglo(ul(t)’ u2(t)) = (0,0). Thus, we have W*(Ey) N'D° = (). By Theorem 4.2 in [1],
we know that there exists a value o > 0 such that tlirgo inf d(S(t)@, Do) > o, V¢ € Dy,
which means that each component of the solution with the initial condition (2) satisfies

lim inf7'(¢) > o, lim infT;(t) >0, lim infT.(¢t)>o0, lim infV(¢)>o.
t—o0 t—o00 t—o00 t—o00



