194 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

e-TPN: definition of a Time Petri Net formalism
simulating the behaviour of the timed grafcets

Médésu Sogbohossou — Antoine Vianou

Département Génie Informatique et Télécommunications
FEcole Polytechnique d’ Abomey-Calavi (EPAC), 01 BP 2009 Cotonou, BENIN
{medesu.sogbohossou,antoine.vianou } @epac.uac.bj

ABSTRACT. To allow a formal verification of timed GRAFCET models, many authors proposed to
translate them into formal and well-reputed languages such as timed automata or Time Petri nets
(TPN). Thus, the works presented in [Sogbohossou, Vianou, Formal modeling of grafcets with Time
Petri nets, IEEE Transactions on Control Systems Technology, 23(5)(2015)] concern the TPN formal-
ism: the resulting TPN of the translation, called here e-TPN, integrates some infinitesimal delays (&)
to simulate the synchronous semantics of the grafcet. The first goal of this paper is to specify a formal
operational semantics for an e-TPN to amend the previous one: especially, priority is introduced here
between two defined categories of the e-TPN transitions, in order to respect strictly the synchronous
hypothesis. The second goal is to provide how to build the finite state space abstraction resulting from
the new definitions.

RESUME. Afin de permettre la vérification formelle des grafcets temporisés, plusieurs auteurs ont
proposé de les traduire dans des langages formels de réputation tels que les automates temporisés
et les réseaux de Petri temporels (TPN). Ainsi, les travaux présentés dans [Sogbohossou, Vianou,
Formal modeling of grafcets with Time Petri nets, IEEE Transactions on Control Systems Technology,
23(5)(2015)] concernent le formalisme des TPN: le réseau résultant de la traduction, dénommé ici
e-TPN, intégre des délais infinitésimaux (¢) pour simuler la sémantique synchrone du grafcet. Le
premier objectif de cet article est de définir la sémantique opérationnelle d’'un e-TPN afin d’améliorer
I'ancienne définition: spécifiquement, une priorité est introduite ici entre deux catégories de transitions
définies pour ces réseaux, dans l'optique de respecter rigoureusement I'hypothése synchrone. Le
second but est de fournir une méthode de calcul de I'espace d’état fini qui découle des nouvelles
définitions.

KEYWORDS : Time Petri Net, timed grafcet, state class, partial order execution, synchronous mod-
elling

MOTS-CLES : Réseau de Petri temporel, grafcet temporisé, classe d'état, exécution ordre partiel,
modélisation synchrone

A Time Petri Net formalism simulating the behaviour of the timed graftcets

1. Introduction

Formal specification of a critical system at the early stage of conception is often
needed to achieve their reliability in working, by means of languages allowing simula-
tion or formal verification on the established model of this system [6]. Graphical state-
transition modeling formalisms in engineering are appreciated because of their intuitive-
ness. They are based on the automata theory, ensuring an unambiguous description of the
behaviours of a system. Petri nets (PN) are one of these formalisms, used to model in a
compact and explicit way the concurrency and the synchronization between the dynamic
components of the so-called discrete-event systems [5]. In PN, firing of transitions (with
possibly multiple concurrent firings in the same instant) changes the state and express the
dynamics of the modeled system. Time Petri nets (TPN) [1] are one of its extensions,
suitable when quantitative time analyses are required for the real-time specifications.

Otherwise, the engineering pratices often promote less formal graphical languages, be-
cause of their increased semantic richness (for instance, litteral formulae and hierarchical
modeling do not exist in the ordinary PNs) favoring more compact and fluent modeling to
the detriment of unambiguous interpretations. These are the cases of formalisms derived
from PNs, such as GRAFCET ! (IEC 60848 standard) [8] and SFC (Sequential Function
Chart, IEC 61131-3 standard) [9], used mainly in the world of the manufacturing control.
Whereas simultaneous fireable transitions are always done by their total interleaving with
PN, the semantics of these two IEC standards considers only synchronous firings; a con-
sequence is that the notion of transitions in conflict does not exist in GRAFCET and SFC
formalisms. GRAFCET is intended for specification purposes (event-driven modeling),
contrary to SFC for implementation uses (clock-driven modeling), and is considered in
the sequel.

To allow a formal verification of GRAFCET (or SFC) models integrating quantitative
time informations, many authors proposed to translate them into formal and well-reputed
languages such as timed automata [7] or TPN [12, 11]. The work in [11] is focused on
defining some transformation rules which are used to translate the entities composing a
timed and not necessarily sound grafcet chart (steps, transitions, literal variables, actions)
into connected blocks to obtain the resulting TPN. The method exploits the similarity
between TPN and GRAFCET to avoid exponential size of the translation, and implicitly
relies on a clear choice about the GRAFCET semantics.

To deal with synchronous firings inherent to GRAFCET formalism, the authors [11]
introduced transitions with infinitesimal € delays, however without redefining formally the
resulting extended TPN. The first goal of this paper is to palliate this lack, by specifying
a formal semantics for the so-called e-TPN; the slight differences with the definition in
[11] are also presented. Basing on this new definition, the second goal is to provide how
to build the state space abstraction of an e-TPN (which is just sketched in [11]) with the ¢
delays. Particularly, it is shown how to take advantage from this kind of TPN to cope with
the state-space explosion problem, by avoiding useless interleaving of concurrent firings
and by abstracting some state classes during the state-space construction.

The three next sections are organized as follows. In Section 2 are given definitions
about TPN with € delays on some transitions: especially, the formal operational semantics
of e-TPN is presented and compared with [11]. In Section 3, the algorithm for generating
the finite abstraction (derived from the state class construction for classic TPN [1, 3])

1. Acronym in French: GRAphe Fonctionnel de Commande Etape Transition.

195

196 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

taking into account the explosion problem is provided. At last, the conclusion section
summarizes the contribution of this paper, and sketches its perspectives.

2. Syntax and semantics of -TPN

2.1. The context

The works [11] proposed to translate a timed (and non-hierarchical) grafcet into TPN
for formal verification purposes. They give some transformation rules to convert the ele-
ments of a grafcet into modules of TPN which are connected, as one goes along a suitable
order of translation. An extra module named phase sequencer (Fig. 1(a)) is necessary
to allow a transient evolution without modification of inputs as external events: it forces
alternation between the reaction phase (called evolution with grafcets) and an external
event production in a stable situation. After adding this first module, the generation of the
complete TPN is done by translating sequentially (see figures in Annex B): the steps, the
inputs, the timed variables, the outputs, the counter variables, the continuous and condi-
tional actions, the stored actions and the grafcet transitions.

Evolution Occurrence ¥ Evolution Occurrence

=,

Evoluti n_er‘ui lfu &] FiringJU'

v

Change! inpbt

N/

Evoluti n_enT)l’[E" [,‘] Fr'rinJ g

0]

Stable

Time_out 1 0] =" Time_out

(0]
4:\ One_Input_changing

Change\input] ' [0’0]

One_Input_changing

(a) (b)

Figure 1. Phase sequencer: former version (a), new version (b)

All the transitions in the resulting TPN bear intervals of the form [4, d] (d is a delay),
except only one: that is called Change_input in the phase sequencer (Fig. 1), of which
firing allows an input event to occur at any time during a stable situation.

An illustration of a grafcet translation into TPN is given in Annex C.

2.2. Syntax

Lets &g, an infinitesimal constant (a delay comparable to 07). It follows that ¢, o

€0 x n forany n € N*, and £ = {e,, | n € N*}. It is assumed, for any ¢,, € £ and any
d € R**, that 0 < €, < d and d + €, ~ d hold. By extension, & = £ U {0}.
Définition 1. A Time Petri net (TPN) is a tuple (P, T,W,W;,Wg, ED, LD, My) such
as:

1) the nodes: P is the set of places and T is the set of transitions (P N T = 0);

2) W:PxT UTx P — N defines the regular arcs between nodes, and their

weights;
3) Wgr: P x T —> N defines the read arcs;
4) W;: PxT — N*U{oo} defines the inhibitor arcs;

A Time Petri Net formalism simulating the behaviour of the timed graftcets

5) the initial marking My : P — N;

6) the earliest firing delays ED : T — QT UE;

7) the latest firing delays LD : T — QT UE U {oo};

8) the set T is a partition of three subsets Tg,, T and T, such as:
a) t€Te, iff ED(t) = LD(t) € & ;
b) teTriff ED(t) = LD(t) € Q™*;
¢) t € Too iff ED(t) = 0 and LD(t) = cc.

Items 1 to 5 correspond to the classic definition about ordinary Petri nets. Let p € P
and t € T. Graphically, an arc ((p,t) or (¢,p)) may be qualified regular, inhibitor or
read. By default, the weight is 0 when no regular arc links two nodes (one place and
one transition), and is 1 when any arc is represented without its weight. Also, no read
arc (resp. no inhibitor arc) directed from a place p to a transition ¢ means the weight
Wr(p,t) = 0 (resp. Wi(p,t) = 00).

A marking M (M : P — N) enables a transition ¢ iff: Vp € P, (M(p) > W(p,t) A
M(p) > Wr(p,t))Afp € P,Wi(p,t) < M(p). En(M) designates the set of transitions
enabled by the marking M. In the next subsection, the notation °¢ (resp. t*) indicates the
multiset 2 of the input (resp. output) places for a given transition ¢, by the relation .

The following items (6 to 8) of the definition 1 extend the classic definition about
TPN, by integrating the infinitesimal delays and the specific constraints on the static firing
interval form of a transition. In practice, transitions with fixed delay in 7 are aimed at
modeling synchronous firings, mainly useful during a reaction phase of the control part.
External events to the control part are modeled by transitions 7%, (input events) and 77
(delay events for the timed variables): it is assumed here that two transitions of these
kinds may never occur simultaneously in the same instant. Then, only one firing in the
set T, U T should trigger a reaction, that is (a sequence of) synchronous firings in the
set Tg,. The transitions with interval [0, 0] may be used as well in a reaction phase as for
an external event production to update some informations instantaneously.

In the sequel, the notation §(¢) is related to a transition ¢ with a fixed delay as the static
interval: 6(t) = ED(t) = LD(¢).

The definition 1 is more general than the informal presentation in [11] where: T(, is
made of a single transition > ¢ such as ED(t) = €9 and LD(t) = co; and £ = {eo, 1,2}

2.3. Semantics

The chosen operational semantics of TPN is the standard semantics (as in the ref-
erences [1, 4]). Moreover, among the enabled transitions, T, transitions always have
priority over those in T, U T (unlike [11] which considers no such priority), according
to the synchronous hypothesis: the reaction time to an external event is always smaller
than the delay before any next occurrence of external events. Then, non-infinitesimal
elapsing of time is only possible when no transition in T, is enabled: time elapse is con-
sidered dense in such a stable state. A next firing in T\, U 77 may allow entering in a
reaction phase where only transitions in T, are fired until reaching a new stable state.

Among the well-known two characterizations of TPN state [3], interval state and clock
state, the second one (which is the more general) is used to define the semantics of e-TPN.

2. Given a set X, a multiset on X is a functionY : X — N.
3. This transition represents the delay observed, waiting for some external event to be produced

to allow leaving from the stable state.

197

198 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

The semantics of a TPN may be defined as a transition system. Let be a vector v of
size n = |T| and with coefficients in R* U &: v € (RT U E)T. v(t;) (for i € [1,n])
represents a quantity of elapsed time related to the transition ¢; € T (local clock* for t;).
The nil vector is vy € (0)7. A state q of the transition system is a pair < M, v >.

Définition 2. The timed transition system < @, {qo}, %, —> of a marked e-TPN is de-
fined by:

1) qo =< My, vg > € Q: the initial state;

2) Q C (N)T x (Rt U&E)T: the set of states (reachable from qo);

3) ¥ = T: the alphabet of the discrete transitions;

4 > C Qx (TURM™UE) x Q: the relation of the timed and instantaneous
transitions:

a) a timed transition is such as:

i) 3d € R™ (non-infinitesimal time elapse), < M,v > 4 < M,V >iff:

#t € En(M)NTg,
r det

vV =v+d
Vi, € En(M) = v'(t) < LD(t)

ii) 3d € & (infinitesimal time elapse), < M,v > LM v > ff

3t € En(M) N Te

ifty € Tg, then v'(ty) o v(ty) + d,
Vit €T, else v'(ty) = v(ty)

t € Bn(M) = o/(t) < LD(ts)

b) an instantaneous firing t; € En(M), < M,v > L« MW > iff:

t; € Te, V (Ft; € En(M)NTe,) A (t € Tr UTw)
M' = M*t; Ut}
0ifty € En(M')
Vit € T, v'(tx) = VAN (tk ¢ En(M\‘tk) Vi = ti)
v(ty) else

According to the definition 2, in a given state g, when some transitions in the set T,
are enabled, one is fired instantaneously if its clock reached its fixed delay, or the least
infinitesimal delay is observed among the enabled transitions in T, to make a transition
fireable; meanwhile, clocks for enabled transitions in 77 U7, do not change. Otherwise,
only transitions in 7 U Ti, are enabled, and the common semantics for TPN is applied:
a transition ¢ must be fired instantaneously if its clocks reaches LD(t), otherwise a wait
delay d may be observed for each transition provided that it does not increase some clock
beyong its LD, or any transition is fired if its clock value is inside the static interval. After
a firing, the clocks value of the transitions En(M’) are updated in accordance with the
standard semantics.

4. The clock of an unenabled transition does not change (and does not mind). Indeed, such a
clock value is not taken into account to decide equality between two states.

A Time Petri Net formalism simulating the behaviour of the timed graftcets

During a reaction phase, it happens that parallel firings and variable updatings are
computed in the same instant, constituting a step of fired transitions in the set Tg,. In the
sequel, such a step is considered in only one interleaving of its firings, in order to reduce
state explosion when computing the state space.

This semantics definition is different from the one adopted in [11] where priority is
not given to firings in T, .

2.4. Enhancements on definitions in [11]

With the new definitions about e-TPN in this section, some few changes have to be
considered about the definitions and interpretations given in [11]. First, as a minor change,
in the former phase sequencer (Fig. 1(a)), ED(Change_input) is now replaced by 0
(Fig. 1(b)): this trick was used to avoid possible firing of this transition concurrently with
those in T¢,, which is useless now since this transition of T, type has lesser priority.

Second, in [11], when only transitions in 77 U T are fireable, it is possible of the
occurrence of an input event in T, to be followed by a firing in 7 concurrently with
some transitions in T¢,, meaning some possible interference between the beginning of a
reaction phase and an external event occurrence>. The new semantics of ¢-TPN avoids
such a case, by always giving the priority to the reaction phase.

3. State space construction

For reminder, the specificity of an e-TPN is simulating the behaviour of a grafcet as
a synchronous modeling language: the execution is an infinite alternation of stimulus
(external event) followed by a reaction phase (called evolution) while no deadlock occurs,
and a reaction may consist of iterated firings (which are sequential and/or concurrent)
constituting a firing stage.

Ideally, a reaction must be made of a finite number of firings (meaning no livelock),
and the possible interleavings of their concurrent and synchronous firings should lead
up to the same state. The state space construction should cash in on this peculiarity to
limit the potential state explosion, while providing an unexpensive way to check this
expectation (see Subsection 3.2).

The state space construction of a TPN is classically based on abstractions of the timed
transition system (definition 2), in shape of transition systems (without time on the tran-
sitions) called state class graphs (SCG): the nodes are state classes (which are generally
agglomerations of an infinite number of states) with dense time. According to the pur-
poses of state space generation, there is several kind of abstractions [3]. Here, the focus
is on the linear SCG [2], knowing that the other types of abstraction may be deduced
without difficulty from this one.

3.1. Computing a state class of an =-TPN

A state class C' is a couple of a marking M and a clock domain D (meaning a con-
junction of time constraints characterizing the clock values of the enabled transitions).
We denote by 7 (resp. T;), the clock variable of a transition ¢ (resp. ¢;) appearing in a
domain. The initial class is Cy = (Mp, Dy), such as Dy = /\tEEn(MO) 7=0.

5. Atthe same time [11], when a timed event in T'r occurs firstly, it cannot be followed by the event
Change_input (with interval [eg, oo[) in concurrency with a firing in T, which is a bit contradictory.

199

200 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

The algorithm 1 (in Annex A) describes the construction of the SCG for an e-TPN.

For computation of class bounds, with € delays, the supplementary arithmetic about
time quantities is obvious. Fori,j € Z* (¢, = —e_,ifn < 0)andd e R*: d +¢; = d,
cofeg; =00, x0=c¢;ande; £&; = gi45.

For a transition enabled in a current class C (line 6), two scenarios are possible: either
En(M) N Tg, is empty (lines 8-15), or not (lines 17-27).

The first scenario which is the classic case, is reminded in Annex A.

The second scenario is specific to e-TPN. The fireability check does not change just
for the first firing (line 17). Computing D’ (in four steps) changes slightly for every firing
ts € T¢ in this scenario. Indeed, an adjustement is necessary to express that such a firing
is only possible after a discrete time : d = §(ty) — 7¢ will replace d > 0 at the first of
the four steps. Moreover, for all (¢;,t;) € Tg, X (Tr U Ts) (with ¢;,¢; € En(M)), the
constraint 7; < 7; (conjunctive with the previous one) should be added at the second step,
to express that an enabled transition not in T, may not occur before anyone in Tg,,.

After the first firing of the second scenario, iterated firings (lines 19-21 of the algo-
rithm 1) are applied, supposing that synchronous firings lead to the same state whatever
is the interleaving used. Thus, the fireability check may be simplified for each of the it-
erated firings: having 7y = d(ty) is obviously sufficient to infer a positive test. For each
reached class C” (line 20), the domain D" is computed as after the first firing (line 18).
Since intermediate state classes of iterated firings should not be stored (those states being
just particular to the current interleaving), only the final reached class C” is saved (lines
23-26) and the transition to reach C” is the multiset of the iterated firings (line 27).

More informations are given about the algorithm 1 in Annex A. An application is
given in Annex C.

3.2. Consistency check of an iterated firing stage

The line 22 of the algorithm 1 checks (maybe by a function) if the state reached by the
stage Ty (firings done in the same instant) does not depend on the particular interleaving
which was executed. Else, the problem should be reported and it means that the model
has to be improved: for instance, contradictory orders from concurrent parts of the system
controller may exist (set and reset the same output in two concurrent stored actions for
example). Concurrency is a factor of explosion: for n concurrent firings, there is 2™ states
covered by the potential n! interleavings.

In case of strong concurrency, partial order techniques may be employed to cope with
the explosion. Especially, the unfolding method [10] which will not interleave concurrent
events forming a stage, may be used from the state just before the first firing (line 17) as
the initial state. This is eased by the finiteness of the executions of a firing stage (in spite
of the presence of inhibitor and read arcs). Knowing the expected unique final state (from
the current interleaving), and knowing the transitions which may be fired in the same
instant (i.e. verifying 7 = §(t)), the unfolding algorithm may be adapted (and based on
the solution to the coverability problems described in [10]) to answer if any other final
state may appear.

4. Conclusion

In this paper, the syntax and the operational semantics of e-TPN are formally defined,
and the construction of the corresponding state class graph taking into account the € delays

A Time Petri Net formalism simulating the behaviour of the timed graftcets

is presented. That is complementary to the works in [11], by now preventing an overlap
between an evolution phase and the occurrence of some external event, and by admitting
only one external event before the subsequent reaction. This is achieved by introducing
priority: the transitions for reaction (7¢) have priority on the transitions for external events
(Tr for quantitative timing events and T, for input events).

An advantage of the proposed state space construction is the efficient elimination of
the explosion due to concurrency during reactions, where no branching is displayed. To
cope with the explosion caused by a multiplicity of input events, the tracks may consist
in abstracting the states of inputs with no incidence on the subsequent reactions (while
computing the SCG), and/or in modelling theirs dynamics to restrain the possible input
changings.

Other perspectives are conceivable. One is to extend the translation rules to take into
account hierarchy (macrostep, enclosure and forcing) in the grafcet: we hope that the
more general definitions given in this paper will help to achieve this goal. Another one is
to propose a model-checking framework for the grafcets, suitable to the specificity of the
translation into e-TPN.

5. References

[1] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time
Petri nets. IEEE Trans. Software Eng., 17(3):259-273, 1991.

[2] B. Berthomieu and F. Vernadat. State class constructions for branching analysis of time Petri
nets. In TACAS, pages 442-457, 2003.

[3] H. Boucheneb and R. Hadjidj. CTL* model checking for time Petri nets. Theor. Comput. Sci.,
353(1):208-227, 2006.

[4] G. Bucci and E. Vicario. Compositional validation of time-critical systems using communicat-
ing time Petri nets. IEEE Trans. Softw. Eng., 21(12):969-992, 1995.

[5] C.G.Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer Publishing
Company, Incorporated, 2nd edition, 2010.

[6] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model checking. MIT Press, Cambridge,
MA, USA, 1999.

[7]1 D. L’Her, P. Le Parc, and L. Marcé. Proving sequential function chart programs using timed
automata. Theoretical Computer Science, 267(1-2):141-155, 2001.

[8] IEC 60848. Grafcet specification language for sequential function charts. Technical report,
International Electrotechnical Commission, 2013.

[9] IEC 61131-3. Programmable controllers - part 3: Programming languages. Technical report,
International Electrotechnical Commission, 2013.

[10] K.L.McMillan. A technique of state space search based on unfolding. Form. Methods Syst.
Des., 6(1):45-65, 1995.

[11] M. Sogbohossou and A. Vianou. Formal modeling of grafcets with Time Petri nets. /EEE
Transactions on Control Systems Technology, 23(5):1978-1985, Sept 2015.

[12] N. Wightkin, U. Buy, and H. Darabi. Formal modeling of Sequential function Charts with
Time Petri nets. IEEE Transactions on Control System Technology, 19(2):455-464, 2011.

201

202 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

A. Algorithm to generate the state class graph of a =-TPN
The algorithm 1 describes the construction of the state class graph for an e-TPN.

1 Input: marked e-TPN;
2 Output: sets Classes and T'ransitions representing the state class graph;
3 Classes := {Co}; Transitions := {};
4 Stack the initial class Co;
5 while the stack is not empty do
6 Unstack (LIFO) the class C' = (M, D);
7 if #t € En(M) N Tg, then
8 foreach transition t fireable from the class C do
9 Compute the successor class C';
10 if C’ ¢ Classes then
11 Stack C’;
12 Classes := Classes U {C"};
13 end
14 Transitions := Transitions U {(C, {{t}},C)};
15 end
16 else
17 Find any fireable transition ¢ from C; Ty := {{t}};
18 Compute the successor class C’;
19 while 3t' € En(M') N T, fireable in the same instant as t do
20 Compute the successor class C” from C'; T; := T, U {{t'}}; C' := C";
21 end
22 Make consistency check of the stage (T;) between C and C’;
23 if C' ¢ Classes then
24 Stack C’;
25 Classes := Classes U {C'};
26 end
27 Transitions := Transitions U {(C, T3, C")};
28 end
29 end
Algorithm 1. Construction of the state class graph of an e-TPN

For a transition enabled in a current class C (line 6), two scenarios are possible: either
En(M) N Tg, is empty (lines 8-15), or not (lines 17-27).

In the first scenario which is the classic case [3], fireability of each enabled transition
is tested, and when it is fireable, the successor class C’ is computed. A fireability check
of a transition ¢ € (T U T) to fire includes the test of the current domain consistency
achieved this manner: DA (d > 0)A(ED(ty) < 7y +d) A(Aseprar)(T+d < LD(2))).
Then, the new domain D’ is computed in the following steps:

1) Initially, D" is D A d > 0; then, replace each variable 7 in D’ by 7 — d;
2) Add the constraints: ED(tf) < 7¢ A (Ayepnon ™ < LD(2));
3) Eliminate 7¢, d and all 7, such as t. € En(M) At. ¢ En(M\°®t.);

4) Add the constraint 7 = 0 for each ¢ newly enabled by M’ (thatis: ¢ € En(M’')A
(t ¢ En(M*t) Vt =ty)).

A Time Petri Net formalism simulating the behaviour of the timed graftcets 203

For this classic scenario where no transition in T is enabled, time progress is only
dense and ¢ delays don’t mind: each bound in a class domain with this kind of value
should be replaced by the value 0.

Line 17 (in the second scenario) supposes that a transition will be always found to con-
tinue the execution of the program; it is guaranteed by the phase sequencer (Fig. 1) which
is an infinite loop execution (no dead state is possible), even if an evolution may be void:
the transition Evolution_end may be fired without firing any other reaction transition
(when the previous occurred external event does not cause a real reaction phase).

The while loop (line 19) may potentially be infinite when a reaction phase is not finite.
This part of the algorithm can be easily modified by saving apart the states C" to detect
and report the infinite loop in order to fix the problem in the model.

It should be noted that, by abstracting the if line 7 and the else block from the lines 16
to 27 which are specific to an e-TPN, the classic algorithm is ensued.

Bound_Step_i_bis

Step_ii -\j/j' [o,b]
< T
ST (e
[0,0]\é<n ﬁﬁ o « Tj X_i_to_true
i LXJDJI’UEl * / i_x_to_fa/se . [TJ,T)] L
/v\ \ tix — Cvix Tj_ X \
Acti thyéﬂt v : ti [EﬂfﬂjJSt i l X ¢ . /
ctivate_Step i '_\ 7“(/De€c ivate_Step_i [51151] v, v, [Elrfll —
Xt I_x_up_wipe 1_x_down_wipe [00] 7 x i to faise
(a) (b) (c)
T

00]

il V) . y
O_1 _true_1 O_1_true 2

(d)

F\ tr tr 2
) ;\» 1 W\ﬂ?g kel
GGG -

Figure 2. Examples of translated elements of grafcet (according to [11])

tr2 2

lal ~

I

(e)

204 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

B. Translation of elements of grafcet into TPN [11]

The given elements of translation here are respectively (Fig. 2): a step ¢ with its
X state variables (Fig. (a)), an input with its rising and falling edges (Fig. (b)), a timed
variable T; / X; (Fig. (c): the transition T'_j_X_i_to_true is the only one type expressing
an external event, with the transition Change_input Fig. 1(a) in a phase sequencer), an
example of continuous and conditional actions (Fig. (d)), and an example of transitions
with simultaneous divergence and convergence (Fig. (e)). Let notice that the elements in
gray are added in a previous phase of the translation.

In this paper, no change concerns the translation rules proposed in [11], except slighty
the phase sequencer as developped in the subsection 2.1.

C. Application

As an illustration of the newly defined semantics, an example of grafcet is provided
Fig. 3(a), its translation into e-TPN is provided Fig. 3(b) and the construction of its state
class graph (SCG) is sketched Fig. 4.

A D11
F 2
o1
(2)——1s/X2
&
Input 11 P L e
Output O1 and action
(a) (b)

Figure 3. An example of grafcet (a) and its translation into e-TPN (b)

The resulting e-TPN (edited with Roméo ® with superimposed images to specify in-
tervals with e delays) gets some simplified modules since the grafcet example is a safe
model, and all litterals (such as the edges about the input I;) are not useful. In general,
the spatial complexity of the translation is globally polynomial with the number of nodes
(steps and transitions), variables or literal terms of a grafcet [11].

6. Roméo, a tool for Time Petri Nets analysis: romeo.rts-software.org

A Time Petri Net formalism simulating the behaviour of the timed graftcets

The -TPN Fig. 3(b) is a safe model. Fig. 4 is just the initial part of the SCG (the
twelve first classes). Each class is represented in a box with the upper part enumerating the
marked places and the lower part giving the enabled transitions with their clock interval
(the clock domain is so simplified).

Evolution, Stable, Evolution, One_input_Changing,|

Step 1, X 1,/X 2, Evolution_end Step_1,X_1,/X_2, Change_input Step 1,X_1,/X2,

/11, — /01, /11,

/01, /01, /0.1,

/15 X2 /15.X2 /1s X2

Evolution_end: [0,0] Change_input: [0,0] Evolution_end: [0,0],
I_1_to_true: [0,0]

1.1_to_true

5 4 3 y

Evolution, Evolution, Occurrence, [Evolution,

Step_2, X_1,/X_2, Firing Step_2, X_1,/X_2, tr1 [Step_1, X_1, /X_2,

11, -+ 1, < 1,

/0.1, /0.1, /0.1,

/15 x 2 /15 X2 /15 x 2

Evolution_end: [£0,£0], Evolution_end: [£0,e0], Evolution_end: [0,0],

Deactivate_Step_1: [0,0], Firing: [0,0], 1: [0,0]

Activate_Step_2:[0,0] Deactivate_Step_1: [0,0],

Activate_Step_2:[0,0]

Deactivate_Step_1

6 v 7 8

Evolution, Evolution, Stable,

Step 2,/X_1,/X.2, Activate_Step_2 Step_2,/X_1,X_2, Evolution_end Step_2, /X_1, X 2,

L1 >, = |1

/0.1, /0.1, /01,

/1s X2 /1s X2 /15 x 2

Evolution_end: [1,£1], Evolution_end: [£1,£1], 15_X_2_to_true: [£0,€0],

Activate_Step_2: [€0,£0] 1s_X_2_to_true: [0,0] Change_input: [0,0],
0_1_to_true: [0,0]

Change_input 0_1_to_true

11 10 9

Evolution, One_input_Changing,| Stable, Occurrence, Stable,

Step_2,/X_1,X_2, Step_2,/X_1,X_2, 1s.X_2_to_true Step_2,/X_1, X2,

11, 11, < 11,

01, o1, o1,

/15 X 2 15 X 2 /15 X2

11_to_false: [0,0], Change_input: [1,1], 15_X_2_to_true: [0,0],

Evolution_end: [0,0], Time_out: [0,0], Change_input: [0,0]

1s_X_2_to_true: [0,1] tr_2: [0,0]

Figure 4. The initial part of the SCG of the example Fig. 3(b)

Altogether, 35 classes are covered (with 38 transitions) by the algorithm 1. Ab-
stracting the intermediate classes during iterated firings eliminates 12 ones; for the given
initial part: the class {Cy} (resp. {Cs}, {Cs}) for the stage {{tr_1, Firing}} (resp.
{{Deactivate_Step_1, Activate_Step_2}}, {{ Evolution_end, O_1_to_true}})donot
appear in the set Classes. Abstracting the class C avoids one of the two interleavings
of the concurrent firings Deactivate_Step_1 and Activate_Step_2.

The SCG abstraction generated by Algorithm 1 holds however more informations
than the first abstraction proposed in [11]: according to this last one, the class Cy and the
classes {C4, Cs, Cg} have to be abstracted too, and in the resulting macro-transition, only
the firing Change_input (resp. tr_1) needs to be displayed for a behaviour verification,
since other relevant informations are contained in the marking of the reached class C3
(resp. C7). With the same idea, the transition between C7 and Cy after the abstraction of
Cs only needs to carry the information Evolution_end. Algorithm 1 is easily modifiable
to enhance the abstraction in this way.

Atlast, in [11] was proposed a second and more compact abstraction’ to only display
the stable states of the grafcet. It will result in a SCG with only 4 classes and 7 transitions.

7. The goal of the first and the second abstractions in [11] was to only preserve the informations
contained in the source grafcet.

205

