206 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Model-checking on grafcets through
translation into time Petri net

Médésu Sogbohossou' — Rodrigue Yehouessi' — Bernard Berthomieu?

IDépartement Génie Informatique et Télécommunications
FEcole Polytechnique d’ Abomey-Calavi (EPAC), 01 BP 2009 Cotonou, BENIN
medesu.sogbohossou@epac.uac.bj, yehouessi_rodrigue @yahoo.fr

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, FRANCE
Bernard.Berthomieu @laas.fr

ABSTRACT. The conception of a critical automated system goes through its formal specification in
order to proceed to its validation. One of the well-known formalisms to specify the behaviour of such
a system is the GRAFCET standard (IEC 60848). GRAFCET being just a semi-formal language, we
choose to use an intermediate language to translate without any ambiguity a grafcet model: the time
Petri nets (TPN), which take into account quantitative time in a model. In this paper, we propose
some verification formulas on GRAFCET charts, via the generated intermediate TPN model: CTL
and SE-LTL temporal logics are used to express properties being about situations and actions of the
GRAFCET chart. Then, we provide a procedure of implementation by using JGrafchart (a grafcet
editor) and the model-checkers in TINA software, namely SELT (for SE-LTL properties) and MUSE
(for CTL properties).

RESUME. La conception d’'un systéme automatisé critique passe par sa spécification formelle afin
de procéder a sa validation. Un des formalismes répandus pour spécifier le comportement d’un tel
systéme est la norme GRAFCET (IEC 60848). GRAFCET n’étant qu’un langage semi-formel, nous
choisissons de passer par un langage intermédiaire vers lequel le modéle est traduit sans ambiguité:
les réseaux de Petri temporels (TPN), qui prennent en compte le temps quantitatif dans un modéele.
Dans cet article, nous proposons des formules de vérification sur les grafcets, via le modéle TPN
intermédiaire généré: les logiques temporelles CTL et SE-LTL sont utilisées pour exprimer des pro-
priétés portant sur les situations et les actions du diagramme grafcet. Ensuite, nous proposons une
procédure de mise en ceuvre passant par I'éditeur de grafcet JGrafchart et les model-checkers du
logiciel TINA, a savoir SELT (pour les propriétés SE-LTL) et MUSE (pour les propriétés CTL).

KEYWORDS : grafcet (IEC 60848), Time Petri Net (TPN), model-checking, CTL, SE-LTL
MOTS-CLES : grafcet (IEC 60848), réseau de Petri temporel, model-checking, CTL, SE-LTL




Model-checking on graftcets through translation into time Petri nets

1. Introduction

The formal verification of the automated systems [9] is essential before their realiza-
tion because they are often critical systems and require important costs. There are several
techniques for checking such discrete event systems: theorem proof, test, simulation and
model-checking [8]. Model-checking is a computer-assisted method for the analysis of
systems that can be modeled by state-transition formalisms. The model-checking soft-
ware takes as input the model (an automaton) and the property to check on it. When a
property is not satisfied for the studied system, model-checking may provide a counter-
example.

The GRAFCET ! formalism [11] is widely used by the automation specialists to de-
scribe the behavior of the sequential control part of an automated system, by the means
of charts in the system specification phase. This standard should not be confused with the
SFC one [12, 13] intended for implementation purposes.

However, GRAFCET (and SFC) formalisms are not mathematically defined, and so
they contain some ambiguities to clarify via a translation of the chart into a formal rep-
resentation, such as SMV textual language [15, 1, 14], timed automata [10] or time Petri
nets (TPN) [16]. TPNs are structurally (and historically) closer to the GRAFCET than the
other formal models.

Thus, the novelty of the present work is to propose a procedure for doing model-
checking on a GRAFCET chart (or grafcet for short) translated into time Petri net (TPN)
according to [16]. Based on the state space construction of a classic TPN [3, 5], two
algorithms are implemented to obtain sufficiently compact abstractions which will be the
inputs of a model-checker. The first algorithm only preserves informations in the original
grafcet (by abstracting extra informations appearing after the translation). The second one
enhances the abstraction and displays only states where the grafcet is in a stable situation.
Futher, taking into account the specificities of the translation into TPN, some expressions
of properties are proposed in CTL and LTL temporal logics, and concern situations and
actions of the grafcet. Thanks to SE-LTL [7], it is specially possible to integrate transitions
in a property formula.

For the practical experiences, the grafcet editor called JGrafchart? is used, and after
implementing translation and abstractions, the model-checking is applied by means of
two components of TINA software 3 [4], namely SELT (for SE-LTL model-checking) and
MUSE (for CTL model-checking).

The remainder of this article is organized as follows. Section 2 shortly presents the
used modeling formalisms, and introduces CTL and SE-LTL model-checking fragments.
In Section 3 a set of formulas is proposed about the situations and actions of a grafcet.
Section 4 describes the different practical steps to achieve model-checking of a grafcet,
and contains a case study to illustrate our approach. Finally, Section 5 concludes this
paper and gives some outlooks.

1. Acronym in French: GRAphe Fonctionnel de Commande Etape Transition.
2. JGrafchart, http://www.control.lth.se/Research/tools/grafchart.html
3. TIme petri Net Analyzer (TINA), http://projects.laas.fr/tina

207



208 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

2. Modeling formalisms and model-checking

2.1. GRAFCET charts

A GRAFCET chart [11] is a graphical representation modelling the behavior of the
control part of an automated system. This representation consists of two parts:

— the structure describes the possible evolutions between the situations. It consists of
the following basic elements: step, transition and directed link. A situation is the set of
active steps at a given instant;

— the interpretation enables the relationship between the literal variables (inputs, out-
puts, delays, internal variables, ...) and the structure. It is done through the transition
conditions (containing inputs, rising/falling edges of boolean inputs, delays, ...) and the
actions (continuous actions, stored actions).

Figure 2 in Annex B shows an example of a grafcet edited with JGrafchart. It should
be noticed that JGrafchart respects only partially the syntax (and the semantics) of the
GRAFCET standard. For instance, a continuous action and a stored action on activation
are defined respectively with qualifiers N and S (like in the SFC standard), and a timed
variable T}; / X; on a step 4 (with the value T in the second unit) is denoted by S;.s > Tj;.

2.2. Translation of grafcet into Time Petri net

Definition 1. A Time Petri Net (TPN) [16] is a tuple (P, T,W, W, Wg,| SI,t SI, My)
such as:

— the nodes: P is the set of places and T is the set of transitions (P NT = ();

W : PxTUT x P — N defines the regular arcs between nodes (and their
weights);

— Wpg: P xT — N defines the read arcs;

— Wi : P xT — Nt U/{oo} defines the inhibitor arcs;

-1 8I: T — QF (resp. + SI: T — Q7T U {oo}) defines the lower (resp.
upper) bound of the static interval of the transitions;

— the initial marking My : P — N.

A marking M may enable some transitions in the set 7. A transition firing is also
conditionned by time information of all the enabled transitions, depending on their static
intervals. A firing sequence expresses a behaviour of the modelled system. The standard
semantics is used here and is more precisely recalled in a reference such as [6].

The works [16] have proposed a procedure of translating a grafcet into a TPN model,
of which syntax is extended by ¢ infinitesimal delays as bounds on some transitions,
allowing to simulate the synchronous semantics of GRAFCET. A extra module (called
phase sequencer) is necessary to allow a transient evolution without modification of in-
puts as external events: it forces alternation between the reaction phase (called evolution
with grafcets) and an external event production (an input change or some timed vari-
able becomes true) in a stable situation. After adding this first module, the generation
of the complete TPN is done by translating sequentially: the steps, the inputs, the timed
variables, the outputs, the counter variables, the continuous and conditional actions, the
stored actions and the grafcet transitions. These grafcet elements (steps, transitions, input
variables, actions, ...) correspond to different but connected blocks in the resulting TPN.



Model-checking on graftcets through translation into time Petri nets

The spatial complexity of the translation is polynomial with the number of nodes
(steps and transitions), variables or literal terms of the grafcet.

2.3. Model-checking

A model-checking software takes as input an abstraction of the system behavior (a
transition system such as a TPN state space [5]) and a property (expresses in Temporal
Logic [8]) to check on the model, and answers if the abstraction satisfies or not this prop-
erty. There are several types of temporal logic including : LTL (Linear Temporal Logic)
to express properties on each path of the transition system and CTL (Computational Tree
Logic) to express properties taking into account the branching of the different possible
futures of the transition system.

A property p is formulated by means of a logical proposition (or formula), of which
interpretation (i.e. true or false value) depends on a model M on which this property
is expressed. Thus, the property p verified for the model M is denoted: M |= p. For
temporal properties about a discrete event system, the commonly used model is called
labeled Kripke structure (LKS): it is a kind of state graph of which each state is labeled
with some atomic propositions (in a set AP) true in this state; a transition between two
states is labeled by a subset A of events in .. In our context, the model M is the state
class graph (SCG) [4] obtained from the translation of a grafcet into an equivalent TPN
[16], and the propositions concerns the marking of the different places in the TPN. Here,
CTL and LTL temporal logics are used to express properties about situations and actions
of the GRAFCET chart.

A path m = (s, Ao, $1, A1, 82, Ag, ...) of a LKS is an alternating infinite sequence
of states (sg, s1, ... with sg the initial state) and events (A, A1, ... with A; a set of TPN
firings from the state s;). Notation 7¢ stands for the suffix of 7 starting in the state s;.

The syntax of SE-LTL (State-Event LTL [7]) path formula is given by (where p ranges
over AP and a ranges over X)) :

p=plal-pleVelene|Xe|Fo|Geo|lpUyp
For the SE-LTL semantics, a path-satisfaction of formulas is defined inductively as
follows (L£(sg) is a subset of AP labeling sq):
)7 E=piffp € L(so), and 7 = aiff a € Ay,
) 7w —piff w jE @,
N EELVpiff T = prorm = o,
H =i Ap2iff T = 1 and 7 = o,
S5YmE=Xpiffr = o,
6)m=F @iff 3k > 0s.t. 78 = o,
N 7l=GiffVk > 0, 7 = o,
)= Upiff Ik > 0st. m° = poandV0 < j <k, 70 = ¢1.
LTL is the restriction of SE-LTL without labels on transitions (i.e. just State LTL).

Here, CTL does not consider events, like simple LTL.
The syntax of CTL state formula is given by (y is a path sub-formula):

¢:=pl-¢lpVP|¢AG[Ep|Ayp
p:=X9¢|F¢|Go|oUg

For the CTL semantics, a state-satisfaction of formulas is defined inductively as fol-
lows:

209



210 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

1) so Epiffp € L(so),

2) so = ¢ iff sg & ¢,

3) s0 = ¢1 V @2 iff 5o |= ¢1 o1 80 = 2,

4) so = ¢1 A 92 iff 50 |= ¢1 and sq = 2,

5) so F E @ iff 3 = (s9, Ao, ... ) s.t. T |= ¢ for ¢ as a path sub-formula,

6) so = A piff Vr = (sg, Ao, ... ), ™ = ¢ for ¢ as a path sub-formula.
A path sub-formula ¢ in CTL is only in the form of: X ¢, F ¢, G ¢ or ¢;1 U ¢o, according
to the same semantics of LTL (items 5-8), and where ¢, ¢; and ¢, are state sub-formulas.

3. Model-checking on grafcets

We distinguish the properties according to the objects of the grafcet that they handle :
situations or actions.

Some properties depend on the specificities of the approach of translation proposed
in [16]. Some elements in the resulting TPN report the evolution states and the stability
states of a grafcet: it is the case of the places called Stable and Evolution, and the
transition Evolution_end.

3.1. Properties on the structural aspect
Let S be the set of steps of the considered grafcet.
The LTL properties on the structural aspect are the followings:
1) To find out whether the step X; is permanently active: G X

2) To test the existence of a step X; permanently active: \/ G X;
X;€8

3) To verify that a step X is never active: G =X
The CTL properties about the structural aspect are the followings:
1) To find out whether the step X; is permanently active: AG X

2) To test the existence of a step X; permanently active: \/ AG X;
X;€8

3) To verify that a step X; is never active: AG —.X;
4) To know if in the future the step X; could be permanently active: EF EG X
5) To test the existence of any step active permanently in the future:

V EFEG X;
X;eE

6) To check* whether the activity of the step X ; is reachable since the one of the
step X;: AG (X; = AF X;)

7) To check whether active step X}, is reachable from active step X; through the
active step X;: EF (X; = EF (X; A (X; = EF Xy)))

8) To check that it is possible to find a grafcet execution where the steps X, ...,
X, are activated simultaneously: EF ((—=X; A ... A =X, ) AEX (X; A .. A X))

9) To check whether it is possible to return to step X; or to verify that a step X;; is
accessible from all grafcet situations: AG EF X;

4. ¢ = pis equivalentto —¢ V .



Model-checking on graftcets through translation into time Petri nets

10) To check if there is a grafcet situation where there is a deadlock (that is to say a
situation that can no longer be left): EF EG (Evolution = Evolution_end)

11) To check if there may be total instability in the system:
EF EG - FEvolution_end

In fact, the two last properties are not valid in CTL since Fvolution_end is an event.

To make such properties valid in a State-Event CTL such as UCTL [2], any classical
proposition Prop only made with events (i.e. transition firings) should be replaced by
AXprop true; so, Evolution_end will become here AX gyoiution_end true.

3.2. Properties on the actions

Let S; be the set of steps associated with the action action;, Tj, (resp. T},) the set of
succeeding (resp. preceding) transitions of the steps associated with the action action;.
The possible forms of action; are:

e action; is a continuous action: ( \/ X;) A Stable
Xi€8;

e action, is a conditioned action by condition; (alogical expression): ( \/ X;)A
X;€S;
Stable A condition;

e action; is a stored action (translatable into AX, tiorn,; true in UCTL):

— onactivation: \/ tr;
tr,-ETj2

— ondeactivation: \/ tr;
tnEle

These different forms are used to check the following LTL and CTL properties :

1) LTL property : to show that an action action; always follows an action actions:
actiony = F action;

2) CTL properties:

a) To show that an action action; always follows an action actions: AG (actiong =
AF action;)

b) To show that an action action; is launched simultaneously with an action actions:
EF ((—actiony A —actions) = EX (actioni A actions))

Naturally, some more general property may mix up both action and step propositions.

4. Implementation of the model-checking

4.1. Procedure

To make model-checking on the grafcet, we proceed as follows:

1) The grafcet to be verified is edited under the JGrafchart software (as shown the
figure 2 of the case study in Appendix B). This software generates an XML file containing
information on the elements of the grafcet;

2) From the XML file, our Java program generates a .net extension file containing
information about the elements of the TPN equivalent to the edited grafcet;

3) The implementation of the algorithms 1 and 2 (Annex A) allows us to obtain
respectively from the file .net, a file .aut containing the information on the elements of

211



212 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

the automaton (with unstable and stable states) of the grafcet and another one containing
only the information on the stable states of the grafcet (by disregarding unstable states);

4) The TINA ktzio tool takes the .aut file as input to generate the Kripke structure
(.ktz extension file on which the verifications are made);

5) Finally, the tools SELT and MUSE (examples in Appendix C) of TINA are used
to check the LTL and CTL properties on the grafcet from the Kripke structure.

4.2. Application

The illustration is based on the grafcet as shown in Figure 2 (Annex B). This grafcet
models two traffic lights located respectively on a track A and a track B. It contains a
transient mode (orange lights blink three times) and a steady state. From the JGrafchart
XML file, we generated the equivalent TPN and the two automata of figures 3 and 4 (in
Annex B, edited from the generated .aut files).

The following examples of properties are checked on the grafcet.

Verification of a LTL property with SELT tool:

o The system leaves the transient mode (firing of transition 13): TRUE. The result of
this verification > is shown in Figure 1.

C:\tina-3.4.4\bin>selt feuxTricolore.ktz

Selt version 3.4.4 -- 01/05/16 -- LAAS/CNRS
ktz Toaded, 42 states, 42 transitions
0.000s

- [0 (er_13 == O (s0 /\ s4));

TRUE

0.016s

Figure 1. Verification of the exit from the transient mode on the first automaton (with stable
and unstable states).

Verification of some CTL properties with MUSE tool:
e The street A light can stay permanently green: FALSE. Cf. Figure 5 (Annex C).

e The counter that allows blinking of the orange lights in the transient mode can reach
the value 4: FALSE. Cf. Figure 6 (Annex C).

e Lights can become green or orange, simultaneously for streets A and B: FALSE. Cf.
Figure 7.

o The same lights can pass simultaneously to two different colors (green and red for
example): FALSE. Cf. Figure 8.

5. Conclusion

Through these works, we have shown the possibility to check properties (SE-LTL and
CTL respectively with the tools SELT and MUSE of the software TINA) on a grafcet after
translating it into an equivalent TPN, and subsequently into an automaton representing the
state-space. This automaton is as compact as possible by abstracting much information in
the TPN and by avoiding multiple interleavings due to the concurrent firings in the TPN.

5. With SELT, operators G, X and A are denoted resp. [], () and /\.



Model-checking on graftcets through translation into time Petri nets

Contrary to the grafcet translation into Timed Automata [10] or TSMV [14], TPNs do
not allow model-checking on quantitative time properties with TCTL logic. To introduce
timed properties, a perspective to our approach is to integrate observers into the TPN of
the translation, to take into account delay events while model-checking the grafcet. An-
other perspective is the creation of a software implementing all steps of our approach:
from editing a grafcet (in full conformity with the IEC60848 standard) until the verifica-
tion phase. Finally, the extension of CTL to Action/State-Based Temporal Logic UCTL
[2] will be an asset to generalize the expression of some properties including events of
firing.

6. References

[1] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe, and O. Stursberg.
Verification of PLC programs given as sequential function charts. In Integration of Software
Specification Techniques for Applications in Engineering, pages 517-540, 2004.

[2] M. H. Ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-based model-checking
approach for the analysis of communication protocols for service-oriented applications. In
FMICS, pages 133-148. Springer, 2007.

[3] B. Berthomieu and F. Vernadat. State class constructions for branching analysis of time Petri
nets. In TACAS, pages 442457, 2003.

[4] B.Berthomieu and F. Vernadat. Time Petri nets analysis with TINA. In Quantitative Evaluation
of Systems, QEST 2006., pages 123—124. IEEE, 2006.

[5] H. Boucheneb and R. Hadjidj. CTL* model checking for time Petri nets. Theor. Comput. Sci.,
353(1):208-227, 2006.

[6] G. Bucci and E. Vicario. Compositional validation of time-critical systems using communicat-
ing time Petri nets. IEEE Trans. Softw. Eng., 21(12):969-992, 1995.

[71 S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based software
model checking. In IFM, vol. 2999, pages 128—147. Springer, 2004.

[8] E. M. Clarke, T. A. Henzinger, and H. Veith. Introduction to Model Checking, pages 1-26.
Springer International Publishing, Cham, 2018.

[9] D. Darvas, I. Majzik, and E. B. Viiiuela. PLC program translation for verification purposes.
Periodica Polytechnica, Electrical Engineering and Computer Science, 61:151-165, 2017.
[10] D. L’Her, P. Le Parc, and L. Marcé. Proving sequential function chart programs using timed

automata. Theoretical Computer Science, 267(1-2):141-155, 2001.

[11] IEC 60848. Grafcet specification language for sequential function charts. Technical report,
International Electrotechnical Commission, 2013.

[12] IEC 61131-3. Programmable controllers - part 3: Programming languages. Technical report,
International Electrotechnical Commission, 2013.

[13] A. Karatkevich. Petri Nets in Design of Control Algorithms, pages 1-14. Springer Interna-
tional Publishing, Cham, 2016.

[14] N. Markey and P. Schnoebelen. TSMV: A symbolic model checker for quantitative analysis
of systems. In QEST, vol. 4, pages 330-331, 2004.

[15] T.Ovatman, A. Aral, D. Polat, and A. O. Unver. An overview of model checking practices on
verification of PLC software. Softw. Syst. Model., 15(4):937-960, October 2016.

[16] M. Sogbohossou and A. Vianou. Formal modeling of grafcets with time petri nets. IEEE
Transactions on Control Systems Technology, 23(5):1978-1985, Sept 2015.

213



214 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

A. Algorithms

Two algorithms are proposed and implemented (in Java) to obtain sufficiently compact
abstractions.

Algorithm 1. SCG (LTL): first abstraction
1 Save and stack (LIFO) the initial state;
2 while (the Stack is not empty) do
3 Unstack a state (or state class);
4 if (a grafcet transition is fireable) then
5 Fire all simultaneously fireable grafcet transitions;
6 Fire all fireable transitions for modifying literals;
7 if (the last reached state is new) then Save and stack it;
8 else if (Fvolution_End is fireable) then
9 Fire transition Evolution_End;

10 Fire all fireable transitions for continuous actions;

11 if (the last reached state is new) then Save and stack it;

12 else if (Change_input or a delay transition of some timed variable model are fireable) then

13 for each fireable transition do

14 Fire all fireable transitions until a grafcet transition or Evolution_End is fireable;
15 if (the last reached state is new) then Save and stack it;

16 end

17 end

18 end

Algorithm 2. SCG (LTL): second abstraction
1 Stack (LIFO) the initial state;
2 while (the Stack is not empty) do
3 Unstack a state (or state class);
4 if (a grafcet transition is fireable) then
5 Fire all simultaneously fireable grafcet transitions;
6 Fire all fireable transitions for modifying literals;
7 if (the last reached state is new) then Stack it;
8 else if (Evolution_End is fireable) then
9 Fire transition Evolution_End;

10 Fire all fireable transitions for continuous actions;

11 if (the last reached state is new) then Stack it;

12 else if (Change_input or a delay transition of some timed variable model are fireable) then

13 for each fireable transition do

14 Fire all fireable transitions until a grafcet transition or Evolution_FEnd is fireable;
15 if (the last reached state is new) then Save and stack it;

16 end

17 end

18 end




Model-checking on graftcets through translation into time Petri nets

Algorithm 1 only preserves informations in the original grafcet, by abstracting ex-
tra informations appearing after the translation: for instance, firings related to the syn-
chronous updatings (step states and literal variables) are abstracted.

Algorithm 2 is the same as Algorithm 1, except that only state classes corresponding
to the stable situations of the grafcet (line 15) are saved, and only Change_input and
delay transition firings from theses classes are displayed.

The two algorithms assume that all possible interleavings of firings which symbolize
a grafcet evolution between two stable situations lead to the same global state. This
assumption (and other prerequisites) were discussed in [16].

B. The case study

e
s8
-’ i

rouge_rue A crange_rue t

orange_rue_A 8 == S8.s>1
E .

vert_rue_A Cp

rouge_rue_B se

veri_rue B 9 == 59.s>1

N rougs rus A; 510
S0

1e==50.5>23

s1

2= 51.5>15

e
— 5+SE‘5>23
3 52.s>5
512

\—‘ l 3= 512, s>2

s3

I I

Figure 2. Case study

From the JGrafchart XML file of Figure 2, we have generated the equivalent TPN and
the two automata of figures 3 and 4 (edited graphically with the tool ND of TINA taking
as input the generated .aut files). To summarize:

— the TPN obtained is made of 75 places, 96 transitions, 205 regular arcs, 110 read
arcs and 20 inhibitor arcs;

— the first abstraction (figure 3) is made of 42 states and 42 transitions;

215



216 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

— the second abstraction (figure 4) is made of 12 states and 12 transitions.

Evolution $1 55 Cp"3 rouge_uo._B vert_rus_A 156X S1

e
oo 28 53 e o Bron n (37
(355151 v s 0 v s 4
(33) s 52383t o B o e & ) eotons s v o A o 8
.55 552 e ]

@ Evolution 52 55 Cp"3 rougs_ue_B oranga_rue_A 2s_X_86 §s X S2

(55) Evotaion 055 693 rouge rus A rauge rue 8235 X 50
wera
28 o e
@ Evolution 5357 Cps rouge_rue_B orange_nie A
w7 (32) s s0 55 3 ougn o A ouge &

ston$054 5 rvi. s 8 n A (1 s

Evoon End e Evolution 5056 Cp'a rouge. rue A orange_rus B

croutonss
(7 eutn 555 o o A g 50152
o
x5 10
e evotton 505 G roue s Aver e
B £r0 o et ®

58 table 0

Stablo 33 range_us_A orange_rue._8

Evoluion B

‘Stable 5085 Cp3 rouge.rue A orange.rue B
15X 5} 0 e

cmansorsx so(2) Gy

D (R |
() st s .. g 8.5
Evolution 59 e Frouen ¢ 120 to.tme
w9 e Evolution S8 Cp'2 orango.rus_A orange_rue B 16X $9
()t soaman e A e Esinsac (7]
o113 o o0

Evolution $10 Cp2 orange_rue. A orange rue B @

)

(stoome
Evoluton s3.0p (10 sitiostocy2 (27

(& v st e x 10 %
D\ e evtonstoc 1sx.51(%)
evouton 1060210510 (22)
s e o Acrnon. 1.8 (1) 00
oo
(fesiocy
xS (feimssicrs
o evoutans e () e
Vs g

Evoluion 59 Cp orange. rue_A orange_ us_B 1 X 59

Evoluion $10 Cp orango_rue_A orange_rue_B "

vouon 123 (2]

Figure 3. Automaton based on algorithm 1 (stable and unstable states of the grafcet)

Stable S0 S6 Cp*3 rouge_rue_A rouge_rue_B

235_X_S0_to_true

Stable S0 S5 Cp*3 rouge_rue_A orange_rue_B @ Stable 156 Cp*3 rouge_rue_B vert_rue A

S8 Stable 155 X_S4_to_true

15s_X_S1/to_true
o Stable 2 S6 Cp*3 rouge_rue_B orange_rue_A

Stable S9 orange_rue_A orange_rue_B 6710_true 5s_X_S2 to_true

Stable S9 Cp*2 orange_rue_A orange_rue_B

Stable S9 Cp orange_rue_A orange_rue_B 1s_X_S10_to_true

15_X_S9 Yon{ue

Stable $10 Cp °

Figure 4. Automaton based on algorithm 2 (stable states of the grafcet)



Model-checking on graftcets through translation into time Petri nets

C. Some TINA results of the case study

These results concern CTL properties tested with MUSE tool, only by using the sec-

ond automaton (with only stable states).

C:\tina-3.4. 4\bm>muse feuxTricolore2.ktz -prelude ctl.mmc -b
01/05/16

Muse version 3.4.4 -- -- LAAS/CNRS
ktz loaded, 12 states 12 transitions
0.000s

- EF EG vert_rue_A;
it : states

FALSE

0.000s

Figure 5. Checking the permanent activa-
tion of the green light of the street A

C:\tina-3.4.4\bin>nuse feuxTricolore2.ktz -prelude ctl.mmc -b
Muse version 3.4.4 —- 01/05/16 -- LAAS/CNRS
Ktz loaded, 12 States, 12 transitions

- EF (( vert_rue A rue_B) \/ (vert_rue_A /\ orange_rue8) \/ (vert_rue_§
range_rue_A) NER S59)%
o5

Figure 7. Checking a safety property

C:\tina-3.4.4\bin>muse feuxTricolore2.ktz -prelude ctl.mmc -b
Muse version 3.4.4 -- 01/05/16 -- LAAS/CNRS
lstéo(;oaded 12 states, 12 transitions

- EF (Cp=4);
it : states
FALSE
0.000s

Figure 6. Checking the state of the counter

Cotina3.4-a\bimmise oty re2.kez —prelude ctl.mc -b

re_rue A /\ rouge_rue &) \/ (vert_rue A /\ orange_rueA) \/ (rouge_rue_
rue s

A/\

Pt
0.000s

Figure 8. Checking no two lights on at the
same place

Fig. 5 shows that a green light will never stay indefinitely turned on. Fig. 6 shows that
the orange lights in the transient mode will not blink more than three times. Fig. 7 displays
that the lights for the two crossing streets will never allow all road users to pass through
simultaneously. Finally, Fig. 8 shows that two lights may not turn on simultaneously for

SOome user.

217



218 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Adjustment module

to give auto-adaptiveness behavior to flood forecasting
systems

Joel TANZOUAK*, Idrissa SARR™, Blaise YENKE*, Ndiouma BAME™,
Serigne FAYE™"

*The University of Ngaoundere (Cameroon),
+The University of Cheikh Anta Diop (Senegal)

RESUME. La prévision est aujourd’hui un facteur clé dans la minimisation des dégats causés par les
inondations. En effet, les systémes de prévision d'inondations (FFS) fonctionnent pour la plupart dans
les pays developpés et utilisent des modéles hydrauliques pour fournir des prévisions du niveau et/ou
du débit des rivieres en se basant sur les prévisions meteo (NWP). Ces données de prévision sont
utilisées pour fournir des alertes d’inondations; Il est donc important d’utiliser de bons modeles hy-
drauliques pour obtenir des données précises. De nombreux modeéles hydrauliques ont été construits
pour les FFS. Cependant, la différence entre les paramétres environnementaux et climatologiques
entre les régions rend trés difficile I'utilisation de ces FFS dans d’autres régions. De plus, I'évolution
constante au cours du temps de I'environnement, causée par des facteurs anthropiques, nécessite
un processus de recallage fréquent des modeles hydrauliques pour qu’ils s’ariment aux changements
environnementaux. Par conséquent, il est nécessaire de construire des FFS qui s’adaptent dynami-
quement aux changements environnementaux sans processus de recallage. Lobjectif de cet article
est de proposer une extension des FFS en introduisant un module d’ajustement qui utilise des don-
nées collectées en temps réel a partir de réseaux de capteurs combinées avec des données prévi-
sionnelles issues des modéles hydrauliques, pour donner une capacité d’auto-adaptation dynamique
aux FFS. Les résultats obtenus a partir d’expériences empiriques montrent les avantages de notre
mécanisme d’ajustement dans I'auto-adaptation des FFS.

ABSTRACT. Forecasting is now a key factor in minimizing the damages caused by Flood. Indeed,
Flood forecasting systems (FFS) operate mostly in developed countries and use hydraulic models to
provide forecasts of river levels and / or flow, based on numeric weather predictions (NWP ). These
forecast data are used to provide flood alerts, so it is therefore important to use good hydraulic models
to obtain accurate flood forecast. Many hydraulic models have been built for FFS. However, the dif-
ference between environmental and climatological parameters between regions makes very difficult
the use of these FFS in other regions. Moreover, the constant evolution over time of the environ-
ment, caused by anthropic factors, need a frequent process updates of hydraulic models so that they
can be adapted to environmental changes. Therefore, it is necessary to build FFS that dynamically
adapt to environmental changes without a recall process. The purpose of this article is to propose
an extension of FFS by introducing an adjustment module that uses real-time data collected from
sensor networks combined with predictive data from hydraulic models, to provide FFS with a dynamic
self-adaptation ability. The results obtained from empirical experiments show the advantages of our
adjustment mechanism in the self-adaptation of FFS

MOTS-CLES : Modéle hydraulique, Réseau de Capteurs, Module d'ajustement, Auto-adaptabilité
KEYWORDS : Hydraulic model,Sensors network, Adjustment module, Auto-adaptiveness




