Adjustment module to give auto-adaptiveness of flood forecasting systems

1. Introduction

According to the statistics in recent decades, floods represent almost 40% of natural
disasters in the world [6], and most of these flood are caused by rivers overflow. This issue
is very challenging for governments in terms of on-time prevention. Many solutions used
to face flood are usually built for developed countries, and are not well suited for African
countries because of geographical and climatological differences. Concerning developing
countries, mainly in Africa, a high number of victims and damages observed could be
explain by these reasons :

— low data accuracy of numeric weather prediction to have good flood forecast quality,

— lack of meteorological information in many regions that makes the flood forecasting
difficult,

— Low forecast accuracy of FFS

Concerning the first two problems, we proposed two solutions in [2] and [3]. It is
important to say that the resolution of NWP data accuracy does not necessary resolve
the FFS forecast accuracy since the data accuracy is one of the FFS accuracy problem
but not the only problem. The goal of this work is to resolve the third problem, by adding
auto-adaptability to FFS and reducing the inaccuracy of forecast. In this respect, we target
the main output hydraulics model parameters of FFS such as river’s level forecast assu-
ming that they are the source of flood forecast inaccuracy when there are environmental
changes. In others words, we suppose that the forecast system is working correctly and if
ever an inaccuracy is observed in the forecast results, then, one of the main reasons are
linked to the hydraulics models that provides output river’s level. The problem are then
probably caused by environmental changes over space or time.

The main contribution of this paper is the proposition of an adjustment module that
gives the auto-adaptiveness ability to FFS. Basically, we developed an algorithm that uses
past forecast and observed data to assess the error in the future FFS forecast and correct
the forecast. The observed data are collected from sensor networks.

The rest of the document is organized as follows : Section II presents hydraulic flood
forecasting systems features. The scope of this work is given in Section III. In Section IV,
the adjustment algorithm designed to improve auto-adaptiveness is presented. Section V
provides a discussion on the evaluation of the proposed algorithm. Conclusion and future
directions ended this work.

2. FFS based on Hydraulic models

FFS predict the upcoming of flood in a certain delay. According to [11], advances in
flood forecasting have been slackened by the ability to assess rainfall continuously over
space. According to [2] FFS can be categorized into two groups : the sensors-based sys-
tems [8, 10, 13, 1, 9, 7] and hydraulic models based systems [15, 14, 12]. In the remaining
of this section, we aim to portray FFS based on hydraulic models.

Medium and long term flood warning system are more required for densely populated
areas in order to give enough time for reducing damages. To predict medium or long
term flood, they rely on both Numeric weather prediction(NWP) and Hydraulic Models.
Like the forecasting of weather where models are used to simulate atmosphere behavior,
hydraulic models can be used to simulate rivers behavior based on rain forecast in order
to estimate whether a flood may occur.
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2.1. How FFS based on hydraulic models work ?

FFS based on hydraulic models usually need recalibration and updates when they are
used in a region other than the one for which they were designed for (eg. a FFS built in
Europe can not properly work in Africa without some recalibration process). In fact, NWP
data are received from meteorological stations and other data like topography, vegetation,
and so on are collected from other systems such as GIS (Geographical Information Sys-
tems). The entire data are sent to the Hydraulic model. The output of the hydraulic model
is then used by FFS to evaluate flood risk. This output could be for example, the river’s
level or river’s flow.

2.2. The problems of FFS based on Hydraulics models

FFS based on hydraulic models are able to predict water levels at any location in the
modeled area for a given date if ever the NWP data are available. According to [4] one
of World’s best practice in FFS incorporates hydraulics models and data assimilation.
Nevertheless there are some problem that we can observed in these FFS :

— Existing FFS are built for specifics region, and it could have some inaccuracy pro-
blem if these FFS are installed to another regions because of environmental differences.
So Existing FFS need to be updated and re-calibrated if we want to use them in some
other regions. This recalibration task are not usually easy and in certain cases, it is needed
to rebuild the hydraulic model used in the FFS.

— There are some important parameters in the environment which are able to change
over time and which are not taken into account. So if the environment meet some changes,
existing FFS will not consider these changes, and this situation could seriously affect FFS
forecast accuracy.

We realized that this type of systems has a main problem : auto-adaptiveness regarding
environmental and regions changes. Our target here is to build a module which is able to
give auto-adaptiveness ability to FFS in order to increase forecast accuracy. The next
section presents the proposed solution.

3. Auto-adaptiveness ability of FFS based on hydraulics
models

The main challenge here is to improve the coherence of hydraulic model forecast
data when environment parameters are changed or have involved. We consider that as
much as hydraulic model are auto-adaptive regarding a given region, the system will be
geographically portable. To get our goal, we rely on a basic hydraulic model described
above to propose a new approach.

3.1. Auto-adaptiveness hydraulic FFS

We leverage the basic model presented before by including others modules. Basically,
observed data are collected from sensors network and they are used with forecast data
produced by the hydraulic model, in the system to realize the adjustment task. These
forecast and observed data are used as input in a learning program in charge of errors
prediction.
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An error is the difference between a prediction P(t) at a time t and the observation Obs(t)
at a time t as shown in (1).

error(t) = P(t) — Obs(t) 1)

The learning program uses a set of past errors, to make the future error prediction. After,
the learning program sends the predicted error to the adjustment program, which applies
the required update (Figurel) before output of the new adjusted forecast.
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Figure 1 : Proposed hydraulic FFS architecture

3.2. Adjustment module description

3.2.1. Basic concepts

We consider a sensor network as a set of sensors at the risk zone that collect real-time
data. Thus, the system collects forecast data from hydraulic model and observed data
collected from sensors network installed across the river. A learning program evaluates
error between forecast and observed data. When a new input forecast data is received,
the adjustment program relies on the learning program to adjust them regarding future
predicted error. These data are afterwards used by the system to evaluate flood risk.

3.2.2. Adjustment formalization

The learning program uses the function (2) to make prediction of the future error using
past errors. Function (2) is a basic exponential smoothing [5] method of time series data
used to make short term predictions. In this paper, forecast and observed data, are daily
data.

e(t)=axet)+(1—a)xet—1) ?)

where

— e(t) represents the error (1) measured between a prediction and an observation at the
time (t)

— &(¢) represents the prediction of the error at a time (t)
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— a represents the auto-adaptiveness speed. « € [0; 1]

Regarding (2), if (¢ — 1) > 0 it will means that the prediction P(t) made by the FFS
will be greater than the waiting observation Obs(t), so to adjust the predicted value P(t),
we need to apply A(t) = P(t) — (¢t — 1) and consider A(t) instead of P(t).

But if in other hand, e(¢ — 1) < 0 it will means that the prediction P(t) made by the
FFS will be lesser than the waiting observation Obs(t), so to adjust the predicted value
P(t), we need to apply A(t) = P(t) + |e(t — 1)]

Based on the two formulations above we can define (3) as a general expression of the
adjustment equation.

At+1)=Pit+1)—axet) —(1—a)xe(t—1) A3)
where :
— P(t+1) is the prediction received from the hydraulic model at a time (t+1)
— £(t-1) represents the prediction of the error at a time (t-1)

— A(t+1) represents the adjusted prediction value at the time (t+1)

The role of algorithm 1 is to evaluate the error after each prediction regarding to the
observations. Obs(t) is the collected value at time ¢ sent by a sensor. Algorithm 2 aims to
adjust the prediction received from hydraulic model according to a predicted error.

Data: New observation data Obs(t)
Result: evaluated error e(t) between P(t) and Obs(t)
while New observation Obs(t) is received do
— e(t)=P(t)-Obs(t)
— Save (t, e(t))
end
Algorithm 1: Error evaluation

Data: New prediction data P(t)
Result: Adjusted value A(t) of the prediction
initialization (c);
while New prediction P(t) is received do
— Predict the potential error on the
prediction received using (2)
if (¢(t — 1) >0) then
AM=P@O-£(t — 1);
Save (t, P(t), A(t));
Use A(t) instead of P(t) for the flood alert evaluation;
else
A)=P(t)+e(t — 1);
Save (t, P(t), A(t));
Use A(t) instead of P(t) for the flood alert evaluation;
end
end

Algorithm 2: Data adjustment
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4. Adjustment algorithm validation

4.1. Data sets

To evaluate our adjustment module, we used measured groundwater level data collec-
ted daily during 1 hydraulic year in a small town in Senegal and we also used groundwater
forecast data made by an hydraulic model for the region during the same time.

4.2, Scope of the test

The scope of this test is to show how the algorithm uses past errors made between the
forecast data and observation data, to adjust the future forecast data in the aim of reducing
the difference between hydraulic prediction and real observation even if the model is not
suitable for the zone.

We want to remind that if we used a model which is not suitable for the region, it is
to materialize the fact that the environment has changed or the model has been taken to
another regions instead of the region where it was designed. So if the model is in another
region or if the environment of the model has changed, it will be not suitable for the
new condition and will need recalibration. We want to show by this simulation how the
adjustment module can reduce the inaccuracy of the model due to these changes.

In others words, this test shows how, if an hydraulic model designed and calibrated for
a given region is taken to another region, the forecast error done by the hydraulic model
in the new region will be adjusted gradually until the system reach to a stable mode where
the error between prevision of the hydraulic model and the observation realized on the
groundwater will be minimized.

4.3. Experimentation

This part presents the evaluation method and the different tools used to validate the
algorithm efficiency. To implement and run our solution, we used a MySql database, and
the python language.

4.3.1. Evaluation

To characterize the efficiency of our algorithm, let us consider 4, the accuracy indicator
defined in (4).

-1

1 Y, - X,
5 — Z | 7 K I (4)
N i=0,Y;#£0 Y;

where Y represents observed value, X the forecast value and N the number of data obser-
ved.

4.4. Result and discussions

Figure 2 presents the measured data collected, the forecast data provided by the hy-
draulic model and the data provided by hydraulic model coupled with the adjustment
module. All these data are for a period of approximatively 1 year for the same region.
According to this figure, it can be observed that the difference between forecast of the
hydraulic model and the observation is significant, as the accuracy indicator for forecast
data is 6=0.08. This difference between the hydraulic model and the observation could be
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explained by the fact that the hydraulics model was not suitable for the zone and needed
to be calibrated to work well. This situation could illustrate the potential behavior of an
hydraulic model when the initial environment has changed.

It can be also observed that the difference between forecast of the hydraulic model
coupled with adjustment module and the observation is very low, as the accuracy in-
dicator for the hydraulic model coupled with the adjustment module is 6=0.003 which
is largely smaller than the accuracy indicator of the hydraulic model alone (0.003 over
0.08). This low difference between the hydraulic model coupled with adjustment module
and the observation could be explained by the auto-adaptiveness behavior that the adjust-
ment module gives to the hydraulic model. At each time the adjustment module tries to
anticipate the error on the future forecast and use it to adjust the prediction received from
the hydraulic model.
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Figure 2 : Forecast realized by (hydraulic model + adjustment module) in Green, Obser-
vations in Blue and Forecast realized by model without adjustment module in red

This figure portrays in a very simple way the efficacy of the adjustment module in the
improvement of the forecast capacity of the hydraulic Model. The difference between the
two models materialized by the different values of § shows that the adjustment module
has a great impact on the forecast, over 96.25% of accuracy improvement. However, some
fluctuations can be observed at the beginning of each regime. This is because at each time
the adjustment module tries to adapt itself to the new regime and if the regime is changing
continuously over the time the fluctuation will continue, because the module will always
try to adapt itself to the new regime.

5. Conclusion

We presented a module which is able to improve the forecast quality of hydraulic
models when the model is not suitable or well calibrated for a given region. The results
obtained show that this module improves the accuracy of forecast data and can play a
significant role in the improvement of the auto-adaptiveness of flood forecasting systems
capacity. For future works, we plan to propose a module that manages the integration of
observed and forecast data collected from sensor networks and meteorological stations.




Adjustment module to give auto-adaptiveness of flood forecasting systems

Références

[1] Elizabeth Basha and Daniela Rus. Design of early warning flood detection systems
for developing countries. /EEE, 2012.

[2] Joel TANZOUAK. Ndiouma BAME. Blaise YENKE, Idrissa SARR. Sytem to
imporve numeric wheather predictions for flood forecasting systems. IEEE-SITIS
conference, 2017.

[3] Joel TANZOUAK. Ndiouma BAME. Blaise YENKE, Idrissa SARR. System to
extend forecast capacity of meteorological stations. ACM-ICGDA conference, 2018.

[4] Blake Boulton and Terry van Kalken. Hydraulic models needed for flood forecas-
ting. Water Engeneering Australia, June 2011.

[5] Jr. Gardner. Exponential smoothing : The state of the art. Journal of Forecasting, 4,
1985.

[6] http ://www.emdat.be/database. Emergency database. 2016.

[7] Dany Hughes and Phil Greenwood. An intelligent and adaptable grid-based flood
monitoring and warning system. Computing Department, Infolab21, Lancaster Uni-
versity, UK, 2006.

[8] Kabita Sahoo Indira Priyadarshinee and Chandrakant Mallick. Flood prediction
and prevention through wireless sensor networking (wsn) : A survey. International
Journal of Computer Applications, 113(9) :7, march 2015.

[9] Sunkpho J. and Ootamakorn. Real-time monitoring and warning system. Songkla-
nakarin Journal of Science and Technology, 2(33) :8, 2011.

[10] Kavi Kumar Khedo. Real-time flood monitoring using wireless sensor networks.
The Journal Of The Institution Of Engineers Mauritius, page 11, 2014.

[11] Robert J. Moore and Steven J. Cole. Issues in flood forecasting : Ungauged basins,
extreme floods and uncertainty. Frontiers in Flood Research, 2006.

[12] F. Pappenberger, K.J Beven, and al. Cascading model uncertainty from medium
range weather forecast (10 days) through a rainfall-runoff model to flood inundation
predictions within the european flood forecasting system (effs). Hydrology and heart
system Science, 4(9), 2005.

[13] Victor Seal and Arnab Raha. A simple flood forecasting scheme using wireless sen-
sor networks. International Journal of Ad hoc, Sensor and Ubiquitous Computing,
3(1) :16, 2012.

[14] J. Thielen, J. Bartholmes, and al. The european flood alert system — part 1 : Concept
and development. Hydrology and Heart System Science, 13, 2009.

[15] V. Thiemigl and B. Bisselinkl. A pan-african medium-range ensemble flood fore-
cast system. Hydrology and heart system science, 19 :21, 2015.

225



