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RESUME. La détection de communautés attire, de plus en plus, l'attention de la communauté scien-
tifique vu son réle central dans la recherche des caractéristiques des réseaux, de méme pour en
exploiter les informations. Toutefois, les travaux existants s’intéressent plus au partitionnement des ré-
seaux en plusieurs communautés, appelées souvent “communautés plates”. Une autre fagon consiste
a détecter les communautés a partir des noeuds d’intérét. Ainsi, nous parlons de “communautés ego-
centrées”. Elles permettent de comprendre, outre les interactions entre un élément et ses voisins,
les interactions qui se passent entre les voisins eux mémes. Dans un travail précédent, nous avons
proposé un algorithme de détection de communautés ego-centrées qui se limite au voisinage direct.
Ceci ne refléte pas la réalité de communication, car les amis des amis d’une personne peuvent avoir
un impact significatif sur son comportement. Lobjectif de ce papier est de proposer une extension de
l'algorithme précédent permettant la détection de communautés ego-centrées au-dela du voisinage
direct. Une évaluation de la nouvelle solution avec un jeu de données réel montre son gain sur la
précédente approche.

ABSTRACT. Community detection arouses, more and more, the interest of scientific community given
its central role in research on network characteristics and in the mining of network information. How-
ever, most existing works are interested in partitioning networks into communities, called “flat com-
munities”. Another way is to detect communities from nodes of interest, such communities are called
“ego-communities”. They allow to better understand not only the interactions between an element
and their neighbors, but also the interactions that are happening between neighbors themselves. In
a previous work, we proposed an algorithm for detecting one-step ego-centered communities. That
is, the approach is limited only to close neighborhood (i.e. nodes directly linked to the ego). However
such an approach does not reflect the communication real state since friends of a person’s friends
can impact on its behavior. The purpose of this paper is to extend our previous algorithm by enlarging
the neighborhood range. We also implement our algorithm and use adolescent friendship network to
demonstrate the effectiveness of our algorithm.
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1. Introduction

Social networks analysis has shown benefits of studying and/or analyzing the struc-
tural properties of social networks. One of the main topics of social network analysis is
community detection, which is a process of decomposing the network into groups that
satisfy a set of characteristics. In fact, detecting communities is splitting the network into
groups that can be helpful for several use cases. For instance, identifying the group of
people who has been in contact (by any communication device) with an Ebola’s patient
give a huge boost on the target to be monitored or to be informed about the risk they incur.

In short, community detection studies can be divided into two main categories, namely,
global community detection (i.e., macroscopic vision of the network) and local commu-
nity detection (i.e., microscopic vision of some nodes of the network). The first category
seeks to partition the network into several communities without any focus on nodes and
their role. In contrary, the second category builds communities from a few nodes of the
network that we call nodes of interest or “ego". Communities obtained from nodes of in-
terests are named ego-centered communities. Basically, an ego-centered community can
be built from an “ego" and its closed neighborhood (alters) as well as it can be defined
based on a larger neighborhood (the neighbors of the alters).

In [8], we proposed an algorithm for detecting ego-communities based on closed
neighborhood. This paper aims to extend the previous algorithm in order to detect ego-
communities based on a larger neighborhood. Moreover, we revised one of the metric,
called affinity degree, we used in [8] to select node candidates that form a community.
The main contributions of our work can be summarized as follows :

— An improvement of the affinity degree in order to prevent evaluating relevances of
nodes that doe not have outgoing links from the ego-community ;

— An algorithm for detecting ego-communities while considering both the alters and
their neighbors, the neighbors of their neighbors and so forth. Actually, the algorithm
works in two phases :1) a selection-phase that helps choosing nodes and 2) a removing-
phase that defines step-by-step the community structure ;

— A validation of our algorithms through experiments conducted over a real data sets
that shows the feasibility of our approach and its efficiency.

For this purpose, our paper is organized as follows : firstly, we define, in section 2,
the preliminary concepts needed to understand the rest of this article. Then, we present,
in section 3, the main existing ego-centered community detection approaches. In Section
4, we present the weakness of the affinity degree that we proposed in a previous paper
and we explain how we correct these weaknesses. Section 5 is used for describing the
process of building ego-communities beyond direct neighborhood. Finally, we evaluate
the efficiency of our solution in section 6 and conclude in section 7.

2. Definitions

In this section, we define the basic concepts needed to fully understand the rest of the
article.

Définition 1 (Eccentricity). Eccentricity of a node u, denoted e(u), designates the num-
ber of links used to connect u to the most distant node in network. Otherwise, e(u) repre-
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sents the maximum distance that can exist between u and any other node in network. The
eccentricity of a node u is given by the following formula :

e(u) = mazvyev(q)d(u, v) [1]

Définition 2 (Node of interest). We call a node of interest or “ego” any node that, by its
status, can influence the behavior of other nodes in a given network.

Définition 3 (k-neighborhood). We define a k-neighborhood of an “ego” e as all nodes
that can be reached with a path length lesser or equal to k. Formally, a node j is in the
k-neighborhood of e if d(e, j) < k. The value of k is between 1 and the eccentricity of u.
Ego’s neighbors can be linked to each other.

The figure 1 shows an example. The nodes colored in orange are direct neighbors
while pinks are in 2-neighborhood as well as greens are 3-neighborhood. For sake of
simplicity, the “ego” with its k-neighborhood is called “ego-network” in the remainder.

Figure 1 — Ilustration of a directed and weighted ego-neighborhood.

Définition 4 (Ego-centered community). An ego-centered community is a group of nodes
made of an ego and its k-neighbors so that the interactions number within the group is
predominant compared to the one between group elements and the rest of network.

3. Related work

To our best knowledge, there is not yet an algorithm for detecting ego-centered com-
munity beyond the direct neighborhood. However, we present in this section the exis-
ting algorithms for direct ego-community detection. Among the existing works, two ap-
proaches have attracted our attention.

3.1. Approach of quality function optimization

Considered as the most used approach [9, 3, 7], it consists in expressing the evaluation
criteria of community relevance in the form of metric, called “quality function”. The me-
tric associates any community with a quality score. But, since applying a one-time quality
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function does not guarantee community relevance, the result of the quality function can
be optimized. The goal of this optimization is to minimize/maximize the quality score in
order to detect a more relevant community than the original one. There are several ways
to express a quality function that depends on how the algorithm defines a community.
The optimization of a quality function is done in three steps. It consists of starting
with the node(s) of interest and adding or removing, in a iterative manner, the node that
maximizes or minimizes the quality function score until we reach a given threshold.

3.2. Approach based on proximity

Such an approach was introduced recently in [S]. The overall principal is to find out
nodes that are enough similar to the “ego" and then gather them as a community. To this
end, proximities values are calculated for all nodes with respect to the “ego". Thus, nodes
are ranked based on their proximities values in order to figure out whether there exists
skew. In other words, if several nodes are almost similar to the “ ego ”, then, they form a
stage on the curve of proximities. Rather, nodes that are strictly different follow the stage
from afar since they have low values. Once this classification done, nodes of the stage
are considered as the community of the “ ego . Nonetheless, the proximity curve usually
decreases steadily with a non-scale law fashion, which means that a node may belong to
several communities of different sizes or does not belong to any one.

Even though there exists plethora of ego-community detection solutions, we can men-
tion a set of drawbacks or limitations as follows :

1) the detection approach considers only the “ego" and its alters ;

2) the topological structure are the only features they use ignoring their intensity
for example ;

3) the links direction are not taken into account while computing metrics.
In this paper, we envision a solution facing these limitations.

It should be noted that there are also some supervised classification methods derived
from machine learning but often used in community detection. Let’s take for example
the k-nearest neighbors algorithms which classify the target elements (nodes) according
to their distance from the nodes constituting the learning sample. Thus, these algorithms
detect flat communities as they classify the nodes of network in different communities.
However, in this paper, we are interested in ego-community detection algorithms.

4. Affinity degree

In a previous paper [8], we have proposed an algorithm for detecting ego-community
detection based only on direct neighborhood. This algorithm seeks to optimize a quality
function taking into account the weight and orientation of links. To this end, we have also
defined a metric that called “affinity degree” allowing to select the most connected node at
each iteration of optimization process of the quality function. In this section, we illustrate
the weakness of the affinity degree we proposed in [8]. Then, we explain how to correct
it.

In fact, the affinity degree A, (C,,) captures how connected is a node v regarding to the
community C,,. We evaluate the affinity degree of a given node according to 2 aspects :
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— Separation of node from the rest of network : does the node have more links within
the community than outside ? Does it communicate more with the nodes of the community
or with the nodes located elsewhere ?

— Level of connectivity within the community : how much the node is connected to
the nodes of the community ? Does it communicate further with them ?

To handle the first aspect, we propose the criterion Separation,, (C,) which allows to
measure the separation of a node v from a community C,, :

_ VNG| dgr(v)

Separation, (C,) = a0) X 4.(0) 2]

Where :

— | Ny N Cy| is the number of common neighbors between v and C,, ;

— d(u) represents the centrality degree of u;

— dC (u) is the sum of weights of all links sharing between the node v and C,, ;

—d,, (u) is the weighted degree of u.

Note that Separation, (C,) value’s varies between 0 and 1. If Separation, (C,) = 0,
thus any v’s neighbor is in C,, while Separation,(C,) = 1 refers that all neighbors of v
are in C,,.

Although Separation,,(C,) can classify nodes according to their level of separation
from the community, Separation, (C,) does not distinguish between a node having only
one neighbor in the community and another one having as many. In fact, this weakness
is manifested in the case where the nodes do not have links outside the community, thus,
Separation,(C,) considers that all these nodes are at the same level of relevance, which
is not necessarily the case. Therefore, we found it necessary to add another criterion allo-
wing to get an idea about the connectivity degree of nodes within the community.

To evaluate the connectivity degree of a given node v to a community C,, we propose
the following formula :

1

= 10) % du (@) 131

Connectivity, (Cy)

The intuitive idea behind is that the more a node is very connected to C,, (having
many neighbors inside and communicating further with them), the more the score of this
criterion will be close to 0.

In the worst case, we can find a node having only one link in the community whose
the weight equal to 1, which means that Connectivity,(C,) = 1. In the best case, the
value of Connectivity,(C,) ~ 0.

Now, we define our degree of affinity as follows :

A, (C,) = Separation,(C,) x (1 — Connectivity,(Cy,)) 4]

In formula 4, we calculate 1—Connectivity, (C,,) so that the bounds of Separation,(Cy,)
and Connectivity,(C,,) are coherent.

This way of selection has the advantage to define a selection order according to the
affinity degree values. The 3 nodes with the smallest value are selected first. The intuition
behind this is that nodes whose affinity degree is small are more likely not to be part of
the community. However, this approach is time consuming since we need to estimate the
affinity degree of each block of nodes before deciding whether it will be removed or not.
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Moreover, the complexity is calculated based on the formula 4. Actually, the first part is
computed with a complexity of 4n, the second part is computed with a complexity of 2n,
which leads to an overall selection cost of %".

5. Ego-community detection

In this section, we describe the procedure that follows our algorithm to detect k-step
ego-centered communities.

5.1. k-neighborhood extraction

To extract the k-neighborhood of a given node u, we use the BFS! Algorithm [2].
Our implementation of BFS is to extract neighbors from the ego by step of neighborhood.
Otherwise, we extract, first, the set of nodes N7 that are directly connected to the ego.
Next, we extract the set of nodes N, that are linked to /N;. Then, we extract the set of
nodes N3 that are linked to N,. The process of nodes extraction continues until we reach
the set of nodes Ny, that are linked to the ego through a path length k. We use a vector [
for saving the extracted nodes. At each iteration, we save the obtained nodes in I at the
condition that they are not already present.

Let’s take as example figure 1, the table 1 illustrates the process of 3-neighborhood
extraction of node Ahmed. As illustrated on row 7 of table 1, at the second iteration, the
neighbors of Sene are Hassan and Maya. Furthermore, Youssef’s neighbors are Maya and
Ali. But, since Maya is already added to the vector I. Our algorithm adds this time only
Ali. The same case occurs between Jamal and Ndong since they have Dia as a common
neighbor. Note that the final result is the union of results of all iterations after deleting the
repeated neighbors.

First iteration
Result : Boly, Sene, Youssef, Jamal, Ndong, Sarr
Second iteration

Node Neighbors
Boly Karim, Ismail, Khaled
Sene Hassan, Maya
Youssef Maya, Ali
Jamal Remy, Dia
Ndong Dia, Nabila
Sarr Najwa

Result of second iteration :
Karim, Ismail, Khaled, Hassan, Maya, Ali, Remy, Dia, Nabila, Najwa
Third iteration

Node Neighbors
Khaled Nabil
Remy Chris

Result of third iteration : Nabil, Chris

Table 1 — Illustration of the 3-neighborhood extraction process using BFS algorithm.

1. Breadth-First Search.
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The time complexity of BFS can be expressed as O(n + m) such as n is the number
of nodes in k-neighborhood and m the number of links.

5.2. Sorting and selecting nodes

After extracting and saving the k-neighborhood of the ego in a vector, we use quick-
Sort algorithm’s [6] to sort the vector in ascending order according to the affinity degree
of nodes. The time complexity of sorting and selecting nodes is O(n + nlog(n)). The
overall complexity of our algorithm to detect an ego-community from k-neighborhood is
20(2n +nlog(n)). Such as 2 is the number of iterations done throughout the optimiza-
tion process of the quality function.

5.3. The Algorithm

Our algorithm initializes the ego community with the k-neighborhood. Then, it selects
from the vector I a block of the most useless nodes, namely, those whose affinity degree
is the smallest. Next, if the withdrawing of the nodes block from the community reduces
more the quality score, they will be removed, otherwise, we leave them in the community
and we move on to other ones. This procedure is repeated until the quality score reaches
a given threshold.

The block size « is a parameter of our algorithm. In this paper, we are not interested
in the impact of block size on the resulting communities.

6. Experimentation

In this section, we aim at assessing the efficiency of the proposed solutions and their
feasibility through experimentation. To this end, we implement our algorithms with igraph
R package [4] and use an adolescent friendship network [1] containing 2539 nodes and
12969 links. See Fig. 2. It’s a directed and weighted network that was created from a study
that includes a 90-minute home interview and aims to improve adolescent health in the
United States. Each student was asked to list his 5 best female and his 5 male friends. A
node represents a student and a link between two students shows that the left student has
chosen the right one as a friend. The higher the weight value, the more students interact
between them. We mention the existence of 6 big ego-neighborhoods. However, for a pur-
pose of experiment, we focus only on a single ego-neighborhood, namely, the one whose
the ego-node label is “ 1 ” because of its predominance (it’s the lowest neighborhood in
Fig. 2, colored in purple). Note that in our experiments, we set k = 2 that means we build
community with a 2-neighborhood at most.

In the remainder of this section, we compare the ego-community algorithm with a
larger neighborhood versus ego-community with only alters [8] to prove that the detected
ego-communities by the first one are more relevant. Then, we show an example of detected
ego-communities of each algorithm to illustrate the difference.

6.1. Algorithms effectiveness

In this part, we aim at evaluating the effectiveness of the previous algorithm we propo-
sed in [8] and that one we proposed in this paper. To this end, we compare them regarding
to the 2 criteria (ego-community isolation and separation). Fig. 3a and Fig. 3b show the
quality function scores of the 2 algorithms.
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Figure 2 — Visualization of adolescent health network. For readability reasons, we did not
display neither the nodes labels nor the links directions.

On Fig. 3a, we notice that the more the cohesion increases, the more the quality score
decreases, this is explained by the fact that the closer we get to the total cohesion (com-
plete sub-graph), the more the majority of nodes becomes relevant in terms of topological
connections. However, we notice that the quality of k-neighborhood algorithm is always
better than that of one-step ; we interpret the space difference between the 2 curves on
Fig. 3a as follows : as the 2-neighborhood ego-community includes more nodes than
1-neighborhood ego-community, the quality of the first one will always be better by in-
creasing the cohesion.

By analogy, we run another set of experiments in order to evaluate the quality function
regarding to the separation of the ego-community.

In this respect, we vary the community isolation (its disconnection with the rest of the
network) from 10% (i.e., higher communication of the group with the rest of the network)
to 100% (total isolation). The community isolation is calculated using the following for-
mula :
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(a) Quality functions of 1-neighborhood algo- (b) Quality functions of 1-neighborhood algo-
rithm vs 2-neighborhood algorithm regarding to rithm vs 2-neighborhood algorithm regarding to
the cohesion. separation of the rest of network.

Figure 3 — Quality functions of 1-neighborhood algorithm vs 2-neighborhood algorithm.
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Precisely, we divide the intensity of the communication within the group by the inten-
sity of all communication involving one member of the group.

We observe on Fig. 3b three things : firstly, more the communication intensity in-
creases, more the quality scores become small. Secondly, the quality of k-step algorithm
is always better than that given by one-step algorithm. Thirdly, we also notice that where
the community isolation is maximum, the two algorithms tend towards the same quality,
namely 0, because if the isolation reaches 100%, it means that the value of outgoing link
weights is zero, thus, the quality score will also be 0.

6.2. Algorithms impact on community structure

To show the pertinence of our k-neighborhood algorithm on the community structure
of node whose label is “ 1 ” of the network depicted on Fig. 2 and extract both the 1-
neighborhood and 2-neighborhood ego-communities using algorithm cited in [8] and the
one we presented in this paper (i.e. k-neighborhood algorithm).

(a) 1-neighborhood ego-community of ego-node
whose label is “ 1 ”, detected by the algorithm

cited in [8]. (b) 2-neighborhood ego-community of ego-node

whose label is “ 1 ”, detected by the k-
neighborhood algorithm.

Figure 4 — Detected ego-communities of node “ 1 ” by one-step and 2-steps algorithms.

As each student lists his 5 best male/female friends, the one-step neighborhood of
each node is composed of 6 nodes, including the ego-node, and 15 links, maximally. The
minimization process of quality function carried out by the algorithm, cited in [8], led
to the rejection of nodes labeled by "2" and "5". Therefore, the one-step ego-community
extracted from the neighborhood of ego-node "1" consists only of 3 ego’s neighbors, see
Fig. 4a. This calls into question the weakness of one-step algorithm [8], because, often,
the one-step neighborhood may not be rich of information, that is why, it is necessary to
be able to go back towards the top of the hierarchy in order to understand the topological
and semantic connections of the node of interest.

On Fig. 4b, we show the ego-community detected by k-neighborhood algorithm.
Then, it is clear that with the possibility of broadening the neighborhood depth, we can
have an idea about friends of friends of a person, which allows us to, either make a sug-
gestion of friends, or predict a new behavior that the person inspired by its neighbors.
Note that for the 2-neighborhood ego-community to be readable, we set the quality thre-
shold ¢ to 0.4, since if € is very small, by having a lot of nodes and links, the detected
ego-community may be illegible.
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To conclude, we proposed the k-neighborhood ego-community detection algorithm
in order to cover the weakness of the algorithm cited in [8] which is limited to the di-
rect neighborhood. Experiments have shown that the results provided by k-neighborhood
algorithm are more relevant than those of one-step, in terms of internal cohesion and
separation from the rest of the network.

7. Conclusion

In this article, we proposed a k-neighborhood ego-community detection algorithm in
order to overcome the weakness of the algorithm cited in [8] which is limited to direct
one-step neighborhood.

This work can be extended in several ways. For instance, the principle of functioning
of the propositions is easily parallelized since the creation of each ego-centered commu-
nity is made independently of the others. Thus, it is possible to assign a thread to each
community building in order to improve the performance of the algorithm. Finally, it is
also possible to take into account the detection of multi-level hierarchical communities by
recursively applying the algorithm to each community detected.
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