236 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

An improved version of lambda architecture

Miguel Landry Foko Sindjoung*, Alain Bertrand Bomgni*, Elie Tagne
Fute***, Justin Chendjou*

*Department of Mathematics and Computer Science

University of Dschang

Dschang

PO Box 67 Dschang, Cameroon

**Department of Computer Engineering

University of Buea

Buea

PO Box 63 Buea, Cameroon

miguelfoko@gmail.com, alain.bomgni @ gmail.com, eliefute @yahoo.fr, chendjoujustin @ gmail.com

RESUME. La quantité de données produites de fagon journaliére ne cesse de s’accroitre de nos
jours, notamment grace a I'avénement des objets connectés a internet. Ces objets produisent des
quantités de données trés importantes (on parle alors de Big Data) et souvent trés sensibles qu’il est
nécessaire d’analyser en temps réel et/ou sur une période donnée, ceci notament en vue des prises
de décisions. C’est dans le but de faciliter 'analyse de données sur ces deux plans que l'architecture
Lambda a vue le jour. Cette architecture décrit différentes couches qui peuvent étre combinées afin
de traiter les données du Big Data. Dans ce document, nous présentons une version améliorée de
I'architecture Lambda. Les résultats de notre implémentation montrent une bonne adéquation entre
les outils que nous utilisons et le modele proposé, ce qui fournit des résultats assez encourageants.

ABSTRACT. The amount of data produced on a daily basis is steadily increasing today, especially
with the advent of Internet of Things (loT). These Things produce very large amounts of data (Big
Data) and often very sensitive that it is necessary to analyze in real time and/or over a given period,
especially for decision making. It is for the purpose of facilitate the analysis of data on both these
plans that the Lambda architecture has emerged. This architecture describes different layers that
can be combined to process Big Data. In this paper, we present an improved version of the Lambda
architecture. The results of our implementation show a good match between the tools we use and the
proposed model, which provides quite encouraging results

MOTS-CLES : Internet des Objets, Big Data, Architecture Lambda, Traitement Temps Réel, Traite-
ment par lot.

KEYWORDS : Internet of Things, Big Data, Lambda Architecture, Real Time Processing, Batch Pro-
cessing.

An improved version of the Lambda Architecture

1. Introduction

In recent years there has been a growing production of data due to the advent of the
internet of things (IoT) [1]. IoT refers to a set of things (usually sensors) that can produce
or capture data and transfer them to the internet network for immediate or subsequent
processing. The amount of data produced by things that constitute the IoT is often very
huge and evolves exponentially over time. The data produced are so diverse that tradi-
tional processing tools and databases are unable to manage them, it is the Big Data. Big
Data refers to sets of data that have become so large that they go beyond intuition and
the human capacities of analysis and even those of classical processing tools[2, 3]. Given
the importance that these data often have (medical application, military, environmental,
enterprise, ...), it is important to find mechanisms that allow their treatment in such a way
as to reap the full benefit they provide. Some data needs to be processed in real time to
immediate decision-making (for example, patient data), while others need to be studied
in the long term (eg statistics produced by a company during a given period). It is in or-
der to meet these two constraints that the Lambda architecture has been proposed, that is
this architecture is intended to solve the problems of big data in real time and over time.
The implementation of the Lambda architecture therefore requires a special knowledge
of the appropriate tools for Big Data problem solving. Based on a study of the tools that
can intervene in the processing of big data, we propose an improvement of the Lambda
architecture which makes it possible to optimize the processing time of Big Data.

2. Related work

This section aims to present a state of the art on the processing of big data. We start
by giving the challenges and the characteristics of big data (section 2.1), then, we present
the proposed solutions processing of big data in the literature (section 2.2).

2.1. Big Data and its challenges
In this subsection, we present the characteristics of big data and the challenges it faces.

2.1.1. The characteristics of big data

The issue of big data is a hot topic today due to the amount of data that is produced
daily. The plurality of data sources, their volume as well as the type of big data informa-
tion makes it almost impossible to process these data using conventional data processing
means. Indeed, IBM’s data specialists present the characteristics of big data in a four-
dimensional coordinate system [2] whose axes are volume, velocity, variety and veracity.
Figure 1 illustrates these coordinates.

— Volume : it is the amount of data available for processing.

— Velocity : helps to measure the speed of generation, the processing and the aggrega-
tion of data.

— Variety : refers to different types of generated data (audio, image, videos, ...). These
data can be structured or not.

— Veracity : measured or collected data from practical processes must be detected in
real time (before any possibility of corruption or manipulation by an external actor).

237

238 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Veracity
Availability
Accountability
Variety Volume
Structured 4V’s of Big Data Terabytes
Unstructured l Petabytes
Velocity
Fast generation
Rate of growth

Figure 1 — Big Data’s characteristics [1]

2.1.2. Big Data challenges

From the characteristics mentioned in section 2.1.1, several challenges are to be ta-
ken up. Indeed, the development of social networks, the multi media, e-commerce, IoT
and cloud computing have exploded considerably the volume of data produced [1]. In
addition, the need to analyze in real time the data generated by their platforms for the
companies renders the traditional processing systems unusable. In this context, new chal-
lenges and research problems are encountered [4, 5], among them we have :

— Data management and storage : Because big data uses very large volumes of data
that grow exponentially, today’s data management systems can not meet the demand be-
cause of their limited storage capacity. Moreover, the existing algorithms are not always
able to process big data, this because of the heterogeneity of these data. It is therefore
interesting to study the possibility of using NoSQL for data backup.

— Data transmission and curation : The amount of data is huge, it is necessary to have
an important bandwidth for the transmission of the latter, especially when we know that
most of the time they are data from the IoT.

— Data analysis and processing : Response time is an important factor when using big
data, especially because the applications that generate these data are mostly very sensitive.
In addition, to have real time responses, the processing that is performed on the data
must be able to handle very large volumes of data that are inherited. The need to have
architectures and tools capable of doing such treatments arises for this purpose.

— Confidentiality and data security : military, medical and many other applications
generate confidential data and must be treated with maximum security so that there is
no information leak. The majority of data management policies are mostly efficient on
static data, but in the context of big data, data varies on a daily basis. Confidentiality and
security in the processing of big data is therefore a major objective.

2.2. Current data processing solutions

Data analytics are essential to plan and create decision support systems for optimi-
sing the underlying infrastructure. This involves not only processing of the online data,
in search for certain events, but also the historical data sources which may be needed
to find data patterns which influence decisions. Cloud providers are paramount for the
availability and durability to their resources but present various challenges. For instance,

An improved version of the Lambda Architecture

for availability, data is often replicated across multiple servers in different geographical
locations, sometimes in untrustworthy locations [6].

Bruns [7] discussed how the current Twitter APIs were extended for third party re-
searchers to deploy their own data analysis on twitter feeds in order to enhance business
practices. However unique solutions that allow multiple users of varying backgrounds to
write and deploy optimised data processing applications is still needed.

IoT and cloud computing are source of very large volumes of diverse data. Some of the
data they produce needs to be analyzed as they arrive (real time processing) while others
need to be studied carefully over long period (batch processing). Given the applications
from which these data come most often (environment surveillance, monitoring of patients,
military applications, online sales companies, ...), it is imperative to find mechanisms
that allow not only a real time analysis but also batch processing. It is in the context of
performing a data analysis on the two previous plans that N Marz et al. [8] proposed the
lambda architecture.

The Lambda architecture is a software design pattern that combines both real-time
processing and batch processing of big data in a single framework [9]. The figure 2 pre-
sents the basic architecture of this design pattern.

Output to
Minute-wise Dashboard
calculations
p me] []
Data] Speed (Reél-tlme)
o processing)
Data Responses)
source
(message [\
queues) \J Batch processing | | CIC@
{Hedoop) ‘ Reséonses >
—————
Monthly
calculations

Figure 2 — Basic lambda architecture for real time and batch processing [9]

It caters as three layers (1) Batch processing for pre-computing large amounts of data
sets (2) Speed or real time computing to minimize latency by doing real time calculations
as the data arrives and (3) a layer to respond to queries, interfacing to query and provide
the results of the calculations.

3. An improved version of Lambda architecture

In this section, we present an improved version of the basic Lambda architecture.
Indeed, the idea of our solution comes from the fact that the basic architecture does not
integrate data ingestion layer, moreover the architecture as presented does not show in a
clear way how the old data are obtained for batch processing (it seems that both layers
process data in real time). The architecture that we propose is presented in the figure 3.

When data is generated, it is intercepted and ingested by a data-ingestion tool (1).
Once the data has been ingested, it is directly made available to a real-time processing
tool (2) and at the same time kept in a distributed database for subsequent batch processes
(3). During real-time processing, data is regularly processed (4) and the results forming

239

240 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Real time
Processing

\
1
1
1
1
1
1
1
1
1
1
]

Batch
Processing

Figure 3 — Our improved lambda architecture
real-time views are stored in a distributed database (5). At considerable time intervals

(monthly for example), batch processes are started on the historical data (6) in order to
obtain results which will constitute batch views. The batch and real-time views that make
up the service layer are therefore merged to answer different user requests.

4. Simulations and results

We present the tools used for our implementation in this section, after which we
present our obtained results.

4.1. Big Data Tools used for the simulations

Figure 4 presents the new architecture with tools we used for the implementation. We

\
1
]
& — S 53 APACH SpOIiz
u s i S?&%M Streaming
1

: E
l /
I

I

1

P e e e ey

Incoming Data ; l\ Data Ingestion
L —— -’ | T —— - Real Time Processing
o ——————— T B —
[)
1 ema | N N e e o o s -
1 \\
) i X [,
[BE gutasaspar S] |
1 5)
= G : !
i Q ! I
1| = ==
i L)] |
1 H I b
\\ Batch Processing y; S 24
f LT ——— -’

Figure 4 — Our implementation

listen a twitter account as incomming data source in our system, our goal is to count the
number of tweets (messages) that arrive in the said account for a given period.

An improved version of the Lambda Architecture

— We use Apache Kafka as data ingestion tool. Kafka[10] is a distributed messaging
system that receives and distributes large volumes of data with low latency. It operates
according to the producer/consumer model where the data is considered as topics. This
means that the producer publishes the topics while the consumer consumes them. The
communication between the producer and the consumer is via the HTTP protocol.

— At the batch processing level, we use both Apache Hadoop and Spark, then we make
a comparison of results obtained by these two tools. the Hadoop framework[11] with its
HDFS, MapReduce and Yarn components enables batch processing. HDFS is a distributed
file system that replicates and stores data in cluster machines. MapReduce is a framework
for processing and analyzing large volumes of data and Yarn is a framework that aims to
separate resource management from the programming model. Although Hadoop is adap-
ted to handle large volumes of data in the context of big data, there are situations where
we need the data to remain a little more in memory, in this case, we can think of use of
Apache Spark [12] which is a framework to manage large volumes of data just like Ha-
doop, but with lower latency. It is also important to note that Spark is compatible with the
data backup tools used by Hadoop.

— In real time layer, we also make two implementations : one with Apache Storm and
another with Spark Streaming and we compare the results. Apache Storm [13] is a popular
open source distributed system for processing real-time data. One of the disadvantages of
Storm is that it is not able to dynamically optimize between the nodes of the Storm cluster,
but that is part of future work in the field. Spark Streaming [14], an extension of Apache
Spark is also a distributed system allowing the processing of data in real time. It has
a different philosophy than storm. Indeed, in streaming, the received data is stored for a
specific time in memory then processed, and returned in Spark RDD (Resilient Distributed
DataSet). The disadvantage here is the size of the data to be stored in memory, if it is
too short, it can generate multiple RDDs. In addition, in the majority of cases, the data
is received through the network, so to ensure the fault tolerance of the data received,
Streaming replicates the data through the active nodes.

— Finally, we use Apache Cassandra as distributed database. Apache Cassandra[14] is
a distributed storage system for managing very large amounts of structured data spread
across the cluster. It provides a highly available, scalable, fault-tolerant, consistent service
and is a column-oriented database.

4.2. The obtained results

We make our simulations in a laptop core i3, 4 CPU, 2.4 Ghz; 8 Go of RAM with
Ubuntu 14.04, 64 bits as Operating System. We have in our environment a single node
in the Hadoop cluster on which we have a NameNode (Master) and a Datanode (Slave).
We also have a single supervisor and a single Nimbus Storm where we have our Storm
topology constitute by a Spout and three Bolts. The first bolt makes the split operations
on tuples. The second makes the filter operations and the last one makes agregation ope-
rations. Our datacenter is a Cassandra cluster constitutes by a node.

Figure 5 shows that Storm processes data faster than Spark. Indeed, Storm processes
the set of tweets received (220,000) in 1215 seconds (181 Tweets/second) while Spark
processes the same tweets in 2475 seconds (90 Tweets/second). This means that Storm’s
processing speed is twice that of Spark. This allows us to deduce that Storm is better
suited for the real-time processing of big data.

241

242 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

250000
Processed

data / /

200000
150000 / /
100000 / /

50000 / /

Streaming

Storm

v—'OG\&!\‘DLﬂ#MNe—‘OO\mI\\DmQM‘
™ = N N = N O N0 O O NN T N W
L I I B B I I

Processing Duration (1 unit <=> 15 seconds)

Figure 5 — Performance comparison between Apache Storm and Spark Streaming

250000
Processed
data 200000 /// /
150000
100000 = Hadoop
— Spark
50000 /
0 , r . ,

1 2 3 4 5 6 7

Processing Duration (1 unit <=> 30 seconds)

Figure 6 — Performance comparison between Apache Hadoop and Spark
Figure 6 itself presents a comparative curve representing the processed data per unit of

time between Hadoop and Spark. On this curve, we notice that Hadoop uses 150 seconds
to process the 220,000 tweets present in Cassandra (a speed of 1460 Tweets/s), while
Spark takes 210 seconds to process the same amount of data. This allows us to say that
Hadoop is faster in batch processing than Spark.

The previous results allow us to conclude that for the implementation of the improved
version of the Lambda architecture we present, it is recommended to use Apache Storm
as real-time processing tool, and to use Hadoop as batch processing tool.

5. Conclusion and open issues

The lambda architecture [8] is a design pattern that combines real-time processing and
batch processing for analyzing big data. Its basic presentation did not include some im-
portant aspects for its concrete implementation. In this paper, we are involved in making

An improved version of the Lambda Architecture

a modification on this architecture. Our contribution thus facilitates its implementation.
Using tweets from a twitter account as a source of data, we developed an implementation
of the new version of lambda architecture, after which we made a comparison between
the tools that are used at the real-time and batch layers. The results of our implementation
shows that in the implementation of lambda architecture, if we want to have low latency, it
is better to use Storm as real-time processing tools and Hadoop as batch processing tools.

Although the results of our implementation are pretty satisfactory, it would be inter-
esting to see the behavior of our implementation when the incoming data is of several
varieties and more than the one we used, that is, what will happen if we have 100 000 000
of tweets that arrives per second ? Will the results we obtained be the same ? It might also
be interesting to make a comparative study between different data ingestion tools in order
to see the real impact of data ingestion in the architecture we proposed. Another perspec-
tive would be to ensure that during the data processing by our architecture the security
and fault tolerance aspects are taken into account because in the current state this is not
the case.

6. Bibliographie

[1]1 D. P. ACHARIJYA, « A survey on big data analytics : challenges, open research issues and
tools », International Journal of Advanced Computer Science and Applications, vol. 7, 1n° 2,
2016.

[1] GEORGIOS SKOURLETOPOULOS, CONSTANDINOS X. MAVROMOUSTAKIS, GEORGE MAS-
TORAKIS, JORDI MONGAY BATALLA, CIPRIAN DOBRE, SPYROS PANAGIOTAKIS, EVANGE-
LOS PALLIS, « Big data and cloud computing : A survey of the state-of-the-art and research
challenges », Advances in mobile cloud computing and big data in the 5G Era, 2017.

[2] SHEN YIN, OKYAY KAYNAK, « Big data for modern Industry : Challenges and Trends »,
Proceedings of the IEEE, vol. 103, n° 2, 2015.

[3] H. Hu, Y. WEN, T.-S. CHUA, X. LI, « Towards scalable systems for big data analytics : a
technology tutorial », IEEE Access, vol. 2, page 652-687, 2014.

[4] H. DEMIRKAN, D. DELEN, « Leveraging the capabilities of service-oriented decision support
systems : putting analytics and big data in cloud », Support Sys, vol. 55 page 412-421, 2013.
[5] C. L. PHILIP CHEN, CHUN-YANG ZHANG, « Data-intensive applications, challenges, tech-

niques and technologies : a survey on big data », Information System, vol. 275 page 314-347,
2014.

[6] M. DIKAIAKOS, G. PALLIS, D. KATSAROS, P. MEHRA, A. VAKALLI, « Cloud Computing :
Distributed Internet computing for IT and Scientific Research », IEEE Internet Computing,
20009.

[71 A. BRUNS, Y. LIANG, L. EUGENE, « Tools and methods for capturing Twitter data during
natural disasters. », First Monday, [S.1], 2012.

[81 N. MARzZ, J. WARREN, « Big data : principles and the best practices of scalable realtime data
systems », Manning Publications, 2013.

[9] MARIAM KIRAN, PETER MURPHY, INDER MONGA, JON DUGAN, SARTAJ SINGH BAVEIJA,
« Lambda architecture for cost-effective batch and speed big data processing », 2015 IEEE
International Conference on Big Data (Big Data), page 2785-2792, 2015.

[10] , « Apache kafka, Available online », http://kafka. apache. org/, , accessed on 21
March 2018.

243

244 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

[11] SHVACHKO K, Kuang H, Radia S, Chansler R., « The hadoop distributedfile system. In : Mass
storage systems and technologies (MSST) », 2010 IEEE 26th Symposium on Incline Villiage,
Nevada, USA, page 1-10, May 2010, http://dx.doi.org/10.1109/MSST.2010.5496972.

[12] , « Apache spark, Available online », https://spark. apache. org/, , accessed on 21
March 2018.

[13] TOSHNIWAL A., Taneja S., Shukla A., Ramasamy K., Patel JM., Kulkarni S., Jackson J.,
Gade K., Fu M., Donham J., « Storm@ twitter », In : Proceedings of the 2014 ACM SIGMOD
international conference on management of data. Snowbird, Utah, USA : ACM, page 147-56,
2014.

[14] MANUEL D1AzZ, Christian Martin, Bartolomé Rubio, « State-of-the-art, challenges, and open
issues in the integration of internet of things and cloud computing », Journal of Network and
Computer Applications, page 99-117, 2016.

