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RSUM. La recherche des motifs séquentiels est un probléme important en fouille de données large-
ment abordée par la communauté de fouille de données, avec un trés grand champ d’applications.
La recherche des motifs séquentiels vise & extraire un ensemble d’attributs d’'un nombre important
d’'objets collectés dans une base de données. De ce fait, les algorithmes d’extraction des motifs sé-
quentiels sont bien connus pour la consommation a la fois du temps et de la mémoire pour de grandes
bases de données. De plus, de nombreuses applications sont critiques en termes de temps d’excécu-
tion et impliquent d’énormes volumes de données. De telles applications exigent une puissance d’ex-
traction que les algorithmes séquentiels ne peuvent fournir. Ainsi, il est clairement important d’étudier
des algorithmes paralléles. Le travail présenté dans ce papier est orienté vers la conception d’'une
version parallele de prefixSuffixSpan pour les architectures multi-coeurs en utilisant la méthode de
parallélisation PCAM. Nous avons testé notre algorithme paralléle en utilisant plusieurs ensembles
de données réelles. Nos expériences ont montré des performances interessantes en termes de vi-
tesse et d"accélération pour presque tous les cas.

ABSTRACT. Sequential pattern mining is an important data mining problem widely addressed by the
data mining community, with a very large field of applications. The sequence pattern mining aims
at extracting a set of attributes, shared across time among a large number of objects in a given
database.Thereby, sequential pattern mining algorithms are well known to be both time and mem-
ory consuming for large databases. Moreover many applications are time-critical and involve huge
volumes of data. Such applications demand more mining power than serial algorithms can provide.
Thus, it is clearly important to study parallel sequential-pattern mining algorithms that take advantage
of the computation. The work presented in this paper is directed towards the design of a parallel
version of prefixSuffixSpan for multi-core architectures using the PCAM parallelization method. We
have tested our algorithm using several real-life data sets. Our experiments showed good speedups
and accelerations for almost all the cases.

MOTS-CLS : croissance-de-motifs, algorithme paralléle, découverte des motifs séquentiels, vitesse,
acceleration
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1. Introduction

Sequential pattern mining is a challenging problem since the mining may have to
generate or examine a combinatorially explosive number of intermediate subsequences.
Thereby, sequential pattern mining algorithms are well known to be both time and me-
mory consuming for large databases. To make sequential pattern mining practical for large
data sets, the mining process must be efficient, scalable, and have a short response time.
Moreover, since sequential pattern mining requires iterative scans of the sequence dataset
with numerous data comparison and analysis operations, it is computationally intensive.
Furthermore, many applications are time-critical and involve huge volumes of data. Such
applications demand more mining power than serial algorithms can provide. Thus, it is
clearly important to study parallel sequential-pattern mining algorithms that take advan-
tage of the computation. Although a significant amount of research results have been
reported on serial implementations [18, 9, 8, 6, 13, 22, 3, 14, 16, 17, 7] of sequential
pattern mining, there is still much room for improvement in its parallel implementation
[20, 21, 15].

The best algorithms for both frequent itemset mining problem and sequential pat-
tern mining problem are based on pattern-growth, a divide-and-conquer algorithm that
projects and partitions databases based on the currently identified frequent patterns and
grow such patterns to longer ones using the projected databases. We have proven in paper
[12, 11] that our sequential pattern-growth algorithm, baptised prefixSuffixSpan, outper-
forms the best previously known sequential pattern-growth algorithm, called PrefixSpan.
In this paper, we design a parallel version of prefixSuffixSpan for multi-core architectures.

The sequel of this paper is organized as follows. Section 2 presents the PCAM paralle-
lization method. Section 3 presents new results. Sub-section 3.1 studies the parallelization
of prefixSuffixSpan. Sub-section 3.2 designs a multi-core version of the prefixSuffixSpan
algorithm. Sub-section 3.3 is devoted to the implementation of the multi-core version of
prefixSuffixSpan and performance analysis. The experimental results show that our pa-
rallel algorithm usually achieve interesting speedups. Concluding remarks are stated in
section 4.

2. The PCAM parallelization method

In this section, we present the PCAM parallelization method [4]. PCAM stands for
Partitioning, Communication, Agglomeration and Mapping. This method organizes the
design of a parallel algorithm from a sequential algorithm into four steps. The starting
step dealts with the partitioning of the overall computations into tasks. The second step
dealts with communications among tasks. The third step studies possible agglomerations
of tasks in order to obtain bigger tasks. The fourth step dealts with the mapping, also
called allocation, of tasks onto available processors.

The partitioning [19, 1, 2] decomposes the overall computations into either fine-grain,
medium-grain (also called coarse-grain) or large-grain tasks, depending on the granula-
rity, i.e. size in term of computations, of tasks. A fine-grain task [1] consists of a constant
number basic operations. A medium-grain task [5] consists of a linear number of basic
operations. In many sequential algorithms, it is on the form of a depth-one loop whose
body computes a constant number of basic operations. A large-grain task [5] consists
of a large number of basic operations. In many sequential algorithms, it is on the form
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of a loop of depth greater than one whose body computes a constant number of basic
operations.

The study of communications involves the identification of data to be transferred bet-
ween tasks as well as the definition of related data structures and of reliable communi-
cation protocols for data exchanges beetween tasks. A classic challenging problem is to
design communication protocols that optimize communication costs [2]. A non-adequate
communication protocol may significantly slows down the execution of the correspon-
ding parallel algorithm. Because of this, the commnication protocol should fit with the
allocation of tasks to processors.

The study of agglomerations leads to a medium-grain decomposition from a fine-grain
decomposition and to a large-grain decomposition from a medium-grain decomposition.
Although agglomerations of large-grain tasks lead to bigger tasks, the granularity of the
new decomposition obtained remains unchanged. By gathering tasks, the number of data
transfers between them are reduced. Thus, agglomerations contribute significantly to the
optimization of communication costs [5]

The mapping consists in assigning tasks obtained from agglomerations to processors
$0 as to minimize communications costs and the sum of idles times of all the procesors
used in the parallel algorithm [1, 2, 5]

3. New results

3.1. Parallelizing prefixSuffixSpan

3.1.1. Partitioning prefixSuffixSpan and studying communications therein

In this section, we design a multi-core version of prefixSuffixSpan. This is done fol-
lowing the PCAM parallelization method [4]. At the first glance, prefixSuffixSpan can be
decomposed into projection tasks. The unique level-one projection task takes as input the
global dataset and a pattern-growth direction [10], mines frequent items and generates one
level-one projected dataset per frequent item. Each non-empty level-one dataset leads to
a level-two projection task which takes as input a frequent item, a level-one projected da-
taset and a pattern-growth direction, and generates length-two sequential patterns and one
level-two projected dataset per length-two pattern generated. Each non-empty level-two
dataset, in turn, leads to a level-three projection task which takes as input a length-two
sequential pattern of the form a.a/, a level-two projected dataset and a pattern-growth
direction, and generates length-three sequential patterns by making grow either prefix o
or suffix o/ and one level-three projected dataset per length-three pattern generated.

More generaly, by considering that the global dataset is of level zero , a level-k projec-
tion task takes as input (1) a length-k sequential pattern of the form a.a/, (2) a level-(k-
1) projection dataset, and (3) a pattern-growth direction. If the pattern-growth direction
is left-to-right (resp. right-to-left) it makes grow prefix o (resp. suffix o). It generates
length-(k+1) sequential patterns and one level-(k+1) projected dataset per generated pat-
tern. In this partitioning, the only task to be executed at the beginning is the level-one
task. Because of this, only one thread can work at the beginning while the others threads
are waiting for the end of the execution of the level-one task. Thus, this first partitioning
is not suitable in minimizing idle times of threads involved in the parallel execution of
prefixSuffixSpan. As a consequence, it can be improved.
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3.1.2. Partitioning the level-one task and studying communications and
synchronization therein

The level-one projection task should be partitioned into a number of parallel smaller
tasks, i.e. tasks that could be executed simultaneously, in order to allow all thread to get
a task to execute at the beginning. This is done here in eight steps following partitioning
techniques developped in [1, 2]. The number of tasks of each step from step 2 to step 7
is equal to the number of threads involved in the parallel execution of prefixSuffixSpan.
These steps are described here as follows :

1) Step 1 : The global dataset is partitioned into as many partial data sets as there
are threads devoted to the parallel execution of prefixSuffixSpan.

2) Step 2 : Each thread gets a partial dataset and computes the partial supports of
items therein in order to obtain partial supports.

3) Step 3 : Partial supports are used to update global supports The update is done
by the thread who has computed the partial supports. Partial supports should be stored
in a concurrent data structure because of concurrent write operations involving global
supports and arisen from many threads. A synchronization barrier is needed here because
the next step should begin after the end of this one. It can be done by using a concurrent
integer data to count the number of threads who have update the global supports. Such an
integer is initialized to zero and incremented after each update of global supports.

4) Step 4 : Each thread gets the global supports per item and a partial list of items,
then seeks for frequent items in its list of items in order to obtain a partial list of frequent
items.

5) Step 5 : Partial lists of frequent items are used to update the global list of
frequent items. The update is done by the thread who has constructed the partial list.
Partial lists should be stored in a concurrent data structure because of concurrent write
operations involving the global list and arisen from many threads. A synchronization bar-
rier is needed here because the next step should begin after the end of this one. It can be
done by using a concurrent integer data to count the number of threads who have update
the global list of frequent items. Such an integer is initialized to zero and incremented
after each update of the global list of frequent items.

6) Step 6 : Each thread gets the global list of frequent items and computes the left
and right weights of the sequences of its dataset received at step 2.

7) Step 7 : Partial left (resp. right) weights are used to update the global left (resp.
right) weight assuming that it is initialized to zero. The global left and right weights
are used to determine the promising pattern-growth direction. The update is done by the
thread who has calculated the partial weights. Synchronization issues arisen here are sol-
ved as in steps 3 and 5.

8) Step 8 : Tasks of this step represent the new level-one projection tasks. Each
frequent item leads to such a task.

3.1.3. An improved Partitioning of prefixSuffixSpan

The main weakness of the first partitioning is overcome here by replacing the level-one
task with its decomposition into smaller (in term of the amount of computations) tasks.
A new partitioning is obtained by replacing level-one task with its decomposition. This
leads to an improved partitioning of prefixSuffixSpan. It reduces the idle times of threads
compared to the previous partitioning.
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3.1.4. Issues related to the improved partitioning

Agglomerations : We use an integer value called depth which indicates the projection-
task level from which agglomerations should be constructed. If the depth value is d, ag-
glomerations are constructed only from the projection tasks of level greater than d — 1.
An agglomeration is obtained by gathering a level-d task with all its descendents. As a
consequence, once a thread retrieves a level-d projection task from the pool of projection
tasks, it executes that task with all its descendents. The resulting partitioning is a mixture
of medium-grain and large-grain tasks. Large-grain tasks permit to reduce the synchroni-
zation costs arisen from the handling of the pool of projection tasks.

The concurrent pool of projection tasks : A concurrent pool of tasks is used to
handle the storage and retrieval of projection tasks. Once a thread generates a projection
task of level lower than the value of depth, it saves that task in the pool if the pool is
not full. Otherwise, it should execute that generated projection task. Idle threads retrieve
projection tasks to execute from the pool. This pool reduces idle times of threads by pro-
viding tasks to idle threads.

Mapping : The mapping of tasks onto threads is unknown before the beginning of
the parallel execution of prefixSuffixSpan. Tasks are assigned to threads during the paral-
lel execution. Because of this, the mapping is dynamic. As mentioned above, idle threads
retrieve tasks to execute from the concurrent pool of projection tasks. This contributes to
load balancing calculations.

Communications : Communications between threads are performed through four
concurrent data structures. As each data structure is a critical resource, it can not be used
by two threads simultaneously. The costs [5] of the handling of synchronization related
to a concurrent data structure increases with the number of threads needing to access that
data structure. This may cause a slow down of the acceleration of the parallel algorithm
when the number of threads increases.

Termination criterion of the multi-core algorithm : A concurrent array called busy
is used. Cell busy[i] contains 1 if the thread numbered 7 has gotten a projection task from
the concurrent pool of projection tasks during its last attempt and O otherwise. If all the
cell of array busy contain 0, it means that no thread has a projection task to execute. When
this condition is satisfied, the multi-core algorithm ends.

3.2. A multi-core version prefixSuffixSpan

In this section, we translate the results of section 3.1 into a multi-core version of
prefixSuffixSpan. Here is the list of functions executed by all thread involved in the multi-
core execution of prefixSuffixSpan.

1) Function THREADTASKFORSUPPORTCOUNT is a translation of steps 2 and 3
into an algorithm. It is executed by a thread to (1) compute the partial supports per item
of its partial dataset, (2) update the global supports per item with its partial supports, (3)
wait for all the updates of global supports, and (4) get the global supports.

2) Function THREADTASKTOFINDFREQUENTITEM is a translation of steps 4 and

5 into an algorithm. It is executed by a thread to (1) construct its partial list of frequent
items from its partial list of items, (2) update the global list of frequent items with its
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partial list of frequent items, (3) wait for all the updates of global list of frequent items,
and (4) get the global list of frequent items.

3) Function THREADTASKTOGETGROWTHDIRECTION is a translation into an al-
gorithm. It is executed by a thread to (1) compute its partial left and right weights of its
partial dataset, (2) update the global left and right weights with its partial left and right
weights, (3) wait for all the updates of global left and right weights, (4) get the global
weights, and (5) determine the pattern-growth direction from global weights.

4) Function PROJECTIONTASK is a translation of the description of projection
tasks into an algorithm. It is used by a thread to execute a projection task.

5) Function MAINTHREADTASK is the starting point of the execution of all thread
involved in the multi-core execution of prefixSuffixSpan. The others functions are called
in this one.

3.3. Implementation and performance analysis

The data sets used here are collected from the webpage (http ://www.philippe-fournier-
viger. com/spmf/index.php) of SPMF software. This webpage provides large data sets in
SPMF format that are often used in the data mining litterature for evaluating and compa-
ring algorithm performance. All experiments are done on a 32-cores. All the algorithms
are implemented in Java and grounded on SPMF software [17]. The experiments consis-
ted of running the multi-core version of prefixSuffixSpan on each data set and for a given
number of threads ranging from two to thirty two while decreasing the support threshold
until algorithms became too long to execute or ran out of memory. We also studied the
influence of the depth’s value on the algorithm’s performance when the number of threads
is thirty two. For each execution, we recorded the execution times, the speed up and the
accelerations. The speed up of a parallel execution is defined as follows.

execution time for one thread

Speed up for n threads = execution time for n threads

The acceleartion of a parallel execution is defined as follows.

speed up for n threads
n

Acceleration for n threads =

The speed up is upperly bounded by the number of threads while the acceleration is up-
perly bounded by 1. In the following, we analyze the performance of our multi-core al-
gorithm per data set. The experimentations show that the speed up may increase (1) as
the number of threads increases, (2) as the depth increases, (3) as the support threshold
decreases, and (4) as the number of sequential patterns increases. They also show that the
speed up may be very sensitive to the change of depth. The acceleration of our parallel al-
gorithm on four real-life data sets is within range [0.58 1] for minimum support thresholds
and thirty two threads. In [20], a parallel version of the well known PrefixSpan algorithm
is proposed. The acceleration of that parallel algorithm on five synthetic data sets is within
range [0.25 0.5] [20] for minimum support thresholds and thirty two processorss. Howe-
ver, a divide-and-conquer property, though minimizing inter-processor communication,
causes load balancing problems, which restricts the scalability of parallelization.In [20],
synthetic data sets show better speed up than real ones. This is because synthetic data sets
have more frequent items and, after the large projected databases are partitioned, the sub-
databases derived are of similar size. However, in real data sets, the number of frequent
items is small and even when the large tasks are partitioned into smaller subtasks, the size
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of the subtasks may still be larger, or even much larger. It is clear that the performance
of our parallel algorithm is better compared to the performance of the parallel version of
PrefixSpan proposed in [20].

4. Conclusion

In this paper, we have proposed a parallel implementation of the prefixSuffixSpan mi-
ning algorithm. This parallel version of prefixSuffixSpan is obtained in four main steps :
(1) partitioning of prefixSuffixSpan into tasks following the PCAM parallelization me-
thod, (2) studying issues related to the partitioning, namely (2.1) agglomerations, (2.2)
the concurrent pool of projection tasks, (2.3) mapping, (2.4) communications and syn-
chronization, and (2.5) the termination criterion, (3) translating tasks into algorithms, and
(4) implementing algorithms.

We have tested our algorithm using several real-life data sets. Our experiments showed
good speedups and accelerations for almost all the cases. These results outperform the best
previous ones [20].
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Figure 1. Performances of the multi-core version of prefixSuffixSpan on the real-life data
set SIGN. The speed up increases (1) as the number of threads increases, (2) as the
depth increases in general up to 4, (3) slightly as the support threshold decreases. In the
first part of the figure, the speed up is quite stable and the acceleration for the minimum
support threshold is within range [0.63 0.86].
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Figure 2. Performances of the multi-core version of prefixSuffixSpan on the real-life data
set Kosarak_converted. The speed up increases (1) as the number of threads increases,
(2) as the depth increases in general, (3) as the support threshold decreases in general
for thirty two threads. In the first part of the figure, the speed up is quite stable and the
acceleration for the minimum support threshold is within range [0.58 0.91].
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Figure 3. Performances of the multi-core version of prefixSuffixSpan on the real-life data
set BIBLE. The speed up increases (1) as the number of threads increases, (2) as the
depth increases in general, (3) slightly as the support threshold decreases. In the first part
of the figure, the speed up is relatively stable and the acceleration for the minimum support
threshold is within range [0.71 1].
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Figure 4. Performances of the multi-core version of prefixSuffixSpan on the real-life data
set LEVIATHAN. The speed up increases (1) as the number of threads increases, (2) as
the depth increases in general up to 6, (3) as the support threshold decreases. In the first
part of the figure, the speed up decreases significantly as the support threshold decreases
when the number of threads is sixteen or twenty two, and the acceleration for the minimum
support threshold is within range [0.80 1].



