Generic heuristic for the mnk-games 265

Generic heuristic for the mnk-games

Abdel-Hafiz ABDOULAYE?*, Vinasetan Ratheil HOUNDJI*, Eugene C. EZIN*, Gael
AGLIN*

* Institut de Formation et de Recherche en Informatique (IFRI)

Université d’Abomey-Calavi (UAC)

Abomey-Calavi

Bénin

** Institute of Information and Communication Technologies, Electronics and Applied Mathematics (IC-
TEAM)

Université catholique de Louvain (UCL)

Louvain la Neuve

Belgique

RESUME. Les jeux en situation d’adversité sont trés étudiés en intelligence artificielle. Parmi ces jeux, nous distinguons
les jeux mnk. Un jeu mnk est un jeu dans lequel deux joueurs placent, chacun a son tour, une piéce de leurs couleurs
respectives sur un plateau m x n. Le vainqueur est le joueur qui obtient en premier un alignement de k piéces de sa
couleur sur une ligne soit horizontalement, verticalement ou diagonalement. Pour la résolution de ce type de jeu, des
algorithmes de recherche basés sur le parcours d’arbre comme alpha-beta sont utilisés avec des heuristiques spécifiques.
Nous proposons une heuristique générique permettant d’évaluer les noeuds des arbres pour les jeux mnk. Nous utilisons
une méthode d’apprentissage automatique (en particulier I'algorithme Q-learning) pour adapter les différents paramétres.
Les résultats des tests montrent qu’en moyenne notre approche est meilleure que certaines heuristiques connues.

ABSTRACT. Adversarial games are very studied in artificial intelligence. Among these games, there are the mnk—games.
An mnk-game is a board game in which two players take turns in placing a piece of their color on an m x n board. The
winner is the player who first gets k pieces of his own color in a row; horizontally, vertically, or diagonally. For the resolution
of this type of games, search algorithms based on tree search like alpha-beta are coupled with specific heuristics. In this
paper, we propose a generic heuristic to evaluate the moves for mnk-games. Then we use a machine learning algorithm
(in particular the Q-learning algorithm) to fit the different parameters of the heuristic to each mnk-game. This allows us to
determine better parameters for the heuristic. For the tests, we associate it with alpha-beta. The experimental results show
that our approach is better than some known heuristics.

MOTS-CLES : jeux mnk, heuristique générique, apprentissage automatique, Q-learning, alpha-beta.

KEYWORDS : mnk-games, generic heuristic, machine learning, Q-learning, alpha-beta.

266 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

1. Introduction

Artificial intelligence is a branch of computer science that aims to understand and build intelli-
gent entities. It is involved in a variety of areas including games. A game is a good testing field for
artificial intelligence. For determistic, turn-taking and zero-sum games, some methods based on
the tree search as alpha-beta [6, 3] have been proposed to play them more easily and faster. Most
of these methods use an evaluation function to improve the final result. Actually the search space
of games can be very large and then it is difficult to explore the whole tree in a reasonable time.
In this case, the usage of a heuristic represents an alternative. In adversarial search, a heuristic is a
function applied on nodes, that evaluates the state of the game by estimating the players gain in
order to choose the most promising move.

In this paper we focus on a particular game category, the mnk-games. An mnk—-game [7, 12]
is a board game in which two players take turns in placing a piece of their color on an m x n
board. The winner is the player who first gets k pieces of his own color in a row; horizontally,
vertically, or diagonally. We propose a generic heuristic based essentially on the notion of threat
(see Section 2). This heuristic makes an evaluation of hits given the parameters associated with
the threats. The parameters have static values favoring the choice of the best move at a moment of
the game. Firstly, the parameters of the proposed generic heuristic have been set experimentally
but it does not always guarantee that they are good for each game. Therefore we use a machine
learning algorithm to improve the quality of the parameters of the generic heuristic. We use and
experiment an approach which, due to machine learning and specially reinforcement learning,
permit to determine the parameters of the generic heuristic mentioned above in order to have
better parameters.

This paper is organized as follows : Section 2 gives some theoretical notions used in the pa-
per; Section 3 explains our generic heuristic and the machine learning method which we use to
improve the quality of the different parameters of the heuristic; Section 4 presents some experi-
mental results ; and Section 5 concludes and provides some perspectives.

2. Background

In this section we define the notion of threat, present some heuristics that use threats, and
briefly explain the reinforcement learning.

2.1. Threat

In mnk—-games, the threat is a very important notion. It represents a configuration of aligned
pieces in a certain way that can assure to its player a certain winning trend. It may be advantageous
or not because threats of player are always compensated with the threats of second player for the
evaluation of the position. Several works use the notion of threat (see for example [1, 4, 14]).

To make this concept more understandable, we will take a mnk—-game whose purpose is to align
5 pieces. We give the different possible threats in an environment in which the combination of five
(05) aligned pieces is winning : the four, the three, the two and the ones. A four is an alignment of
four pieces of one player either horizontally, vertically or diagonally. There are several types of
four categorized into three categories. Below we present six configurations that give the four :

- Type 1 : four consecutive aligned pieces whose extremities are free;

— Type 2 : four consecutively aligned pieces whose location at one extremity is free while the
second is occupied ;

Generic heuristic for the mnk-games 267

— Type 3 : four consecutive aligned pieces whose extremities are occupied ;
— Type 4 : four pieces aligned with a jump location and whose extremities locations are free;

— Type 5 : four pieces aligned with a jump location and whose location at one extremity is free
while the second is occupied ;

- Type 6 : four pieces aligned with a location jump and whose extremities locations are occu-
pied.

These are the three categories : the four open (type 1), the four half-open (type 2, 4, 5, 6) and the
four closed (type 3).

2.2. Heuristic of Shevchenko

Shevchenko [8] does an analysis of the combinations of pieces present on the game board on
the lines as well as on the columns and the diagonals. The analysis concerns only the player’s
pieces. In this sense, Shevchenko only takes into account the threats of one player on the board.
Moreover, given k, the number of pieces to align before winning, interresting threats are those of
size of k, k—1, and k — 2 with no distinction between half-open, open and closed types. Parameters
are associated with the threats according to their size and remain unchanged until the end of the
game. These settings are : 100 for the k size threat, 10 for the k¥ — 1 threat, and 1 for the k — 2 threat.
Shevchenko used his heuristic for Gomoku game.

2.3. Heuristic of Chua Hock Chuan

The application of the Chua Hock Chuan heuristic [5] requires to find the alignments of player’s
and opponent’s pieces on the lines, the columns and the diagonals. It therefore considers the
threats of the player and the opponent present on the board but only those of size k, ¥ — 1 and
k — 2. There is no distinction between half-open and open types. The parameters associated with
the player’s and opponent’s threats are fixed until the end of the game. We have : threat size k
(100 for the player and -100 for the opponent) ; threat size £ — 1 : 10 for the player and -10 for the
opponent; threat size £ — 2 : 1 for the player and -1 for the opponent. Chua Hock Chuan proposed
this heuristic for Tic Tac Toe game.

2.4. Reinforcement learning

The reinforcement learning problem is a kind of direct framework of the problem of interaction
learning to achieve a goal. The learner or decision maker is called the agent that interacts with
its environment. The agent selects the actions and the environment responds and presents new
situations to the agent. The environment gives rise to rewards, special numerical values that the
agent tries to maximize. A complete specification of an environment defines a task, an instance of
the reinforcement learning problem.

Formally, the basis of the reinforcement learning model is : a set of states S of the agent in the
environment; a set of actions A that the agent can perform; and a set of reward scalar values R
that the agent can obtain.

At each step t of the algorithm, the agent perceives its state s; € S and the set of possible
actions A(s;). It chooses an action a € A(s;) and receives from the environment a new state s
and a reward 7, 1. Based on these interactions, the reinforcement learning algorithm must allow
the agent to develop aIl : S — A policy that allows him to maximize the amount of rewards. Thus
the reinforcement learning method is particularly suited to problems that require a compromise
between the quest for short-term rewards and long-term rewards.

If we had to identify a central and new idea to reinforce learning, it would certainly be lear-
ning by Temporal Difference (TD) [10, 11, 2]. TD learning is a machine learning method based on

268 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

prediction. TD methods use experience to solve the prediction problem. Given some experience
following a II policy, they update their v estimate of vr; (value obtained by following the II policy)
for non-terminal states s; occurring in this experiment. A policy is a rule that the agent follows for
the choice of actions, given the state in which he is. At the moment ¢ + 1, they immediately form
a target and make a useful update using the observed reward R;; and the estimate V' (S;;1). The
equation (1) gives the update formula.

V(8:) < V(St) + a[Req1 + YV (St41) — V(S)] €))

One of the most important advances in reinforcement learning has been the development of an
off-policy TD control algorithm called Q-learning [11, 9, 13]. Q-learning is used to find an optimal
action selection policy. It works by learning an action-value function that ultimately gives the
expected utility of taking a given action in a given state and following the optimal policy thereafter.
When such an action value function is learned, the optimal policy can be constructed by simply
selecting the action with the highest value in each state. The algorithm has an update formula
which calculates the quantity of a state-action combination :

Q(St, Ap) + Q(St, Ap) + o[Rty + ymazQ(Sit1,a) — Q(St, Ar)] 2

Before learning begins, Q returns a fixed (arbitrary) value chosen. Whenever the agent selects
an action, observes a reward and a new state (that may depend on both the previous state and the
selected action) then @ is updated.

3. Generic heuristic and determination of the different parameters

This section specifies the basic elements for the generic heuristic’s definition, gives the formula
and describes the method that we propose for parameters determination using reinforcement lear-
ning.

3.1. Generic heuristic

For a game in which the number of pieces to line up to win is k, the big threat that needs to
be created and that always leads to a win is the £ — 1 open type and the only combination that
can come up in this configuration is the k — 2 open type threat. On the other hand, the half-open
threat of k — 2 is not interesting in itself. Also, the ¥ — 1 half-open threat is very close to victory, it
is less important than a k£ — 2 open-car type. In the latter case, we can open k — 1 half-open type as
it can also lead to the k — 1 open threat , which is very interesting. In general, the game becomes
decisive when on threats of size k—2 and k£ — 1. Threats smaller than k£ —2 are not interesting. These
are threats that are not co-affected by the same weighting as those that are adverse or not. A large
weighting is a given to the threats against the player’s threats to prevent the opponent from taking
an irreversible advantage. On the other hand, threats classified as uninvolved (less than ¥ — 2 and
the half-open threat of k£ — 2) are co-assigned in the same way as players.

Below we present the formula of the proposed generic heuristic based on the threats defined
above. The different values of the parameters of the heuristic were first fixed regarding the priority
of threats and experimentations.

A= f:_f (@2i-1pi,1 + a2ipi,2) + @g(k—2)—1Pk—2,1 + 100px_2 2 + 80px—1,1 + 250px_1,2 + 1000000py if & >3
a1pk—2,1 + 100pg_2 2 + 80px_1,1 + 250px_1,2 + 1000000p, ifk=3

Generic heuristic for the mnk-games 269

B— k3 (a2i—10i,1 + 02:01,2) + Ga(k—2)—1@k—2,1 + 1300g5_2,2 + 2000gx_1,1 + 5020g)_1,2 + 1000000gy, if & > 3
a1qi—2,1 + 1300g;,—2,2 + 2000g; 1,1 + 5020g%_1,2 + 1000000g;, if & =3

f=A-B

in which A is the evaluation of the player’s threats on the board ; B is the evaluation of the
opponent’s threats on the board ; a; is the coefficient of the lower threat index ¢; p; ; is the player’s
number of half-open threats of size i; p; 2 is the player’s number of open threats of size 3; p; is
the player’s number of threats without hole of size ¢; g; ; is the opponent’s number of half-open
threats of size ¢; ¢, 2 is the opponent’s number of open threats of size i : ¢; is the pponent’s number
of threats without hole of size i : n is the number of alignment leading to victory.

3.2. Proposed method for automatic determination of parameters

The generic heuristic is based on the notion of threat. The parameters of the heuristic are assi-
gned according to the importance of the threats and are the same for each game. The best option
is to be able to determine the parameters adapted to the situations encountered during the resolu-
tion of the game and to the rules of displacement. In this setion we propose a way to automatically
update the parameters of the heuristic with the Q-learning method.

Q-learning uses a quality evaluation function Q. This allows to have a table of values (Q values)
that helps in the choice of an action when we are in a given state. The value of the parameters
greatly influences the evaluation of a position and the choice of the move to play. Therefore, we
consider that using Q-learning, we must evaluate the quality of the parameters of the heuristic.
The @ values are the parameters to be determined. Before the learning begins, the @ function
returns a fixed value chosen by the programmer. We recall that the heuristic used fixed parameters
determined experimentally and which proved their worth. These are the parameters that we use
as initial @ values.

The algorithm allows to update a value by time step, a parameter in our case. It is necessary to
find the parameter to update for a given step. We get a new step when a move is made. The alpha-
beta algorithm returns the best estimated move to go to the next step. We look for all the threats
on the board after a move and identify the most important threat. The parameter associated with
the latter is the update. Also we associate a reward to each type of threat since the chosen action
leads to a certain configuration of threats. In general, it is null except for the goal state (state of the
board where the player has the "n" required pawns aligned). Identifying the most important threat
allows you, at this stage, to know which reward to use for the update.

The actual update is done using the formula (2) and requires finding the maximum value @
in the next state. It will be necessary to determine the types of threat that the legal movements
could create in order to take the maximum of their parameters. If we have an S state that, after an
A action, leads to an S’ state, we simulate the possible moves from the S’ state, collect the most
important threats likely to be created after each move and identify the most important of them. Its
parameter is the maximum value @ sought.

The evaluation of a position takes into account the threats of the player and the opponent. As
a result, we also update the threat parameters of the opponent to avoid any bad evaluation of the
heuristic. This update is done following the same principles that we described for the player. The
parameters are the initial () values and we identify the largest enemy threat created by an action.
The @ function is used for the corresponding parameter and requires to find the maximum value
of the parameters for the most important enemy threats obtained after the simulation from the S’
state.

270 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

We make two updates at each step : one on the parameter associated with the most important
threat of the player and the other on the parameter associated with the most important threat of
the opponent.

In addition, the learning rate and the reduction factor of the update formula have a large impact
on the learning process. Since the game play environment is entirely deterministic, we chose a
learning rate of 1. The reduction factor was chosen to meet the basic requirements of heuristics. A
value too close to 1 would make the threat coefficients too close to each other. This leads to a bad
evaluation of the positions and thus makes the heuristic less efficient. A value close to 0 ensures
to a certain extent a favorable difference between the parameters. After many tests, we selected
~ = 0.1. The update formula (2) becomes :

Q(S, A) = R+ ymazQ(S', a) ©)

We use Algorithm 1 to update the parameters of the heuristic.
Algorithm 1: Parameters Update Algorithm

INITIALIZE THE TABLE OF VALUES WITH THE EXISTING FIXED PARAMETERS

repeat

Initialize S with the current state of the board

repeat for each step of the episode

Choose A // action from alpha-beta algorithm using generic
heuristics

Execute the action A

Find the parameter Pp associated with the player’s most important threat

Find the parameter Py associated with the opponent’s most important threat

Receive the reward Rp corresponding to the player’s most important threat

Receive the reward Ro corresponding to the opponent’s most important threat

Observe the following state .S’

Pp(S,A) « Rp +ymazPp(S',a) // marPp(S’;a) is the maximum value of
parameters for the most important player’s threats that can
be created from the new state S

Po(S,A) + Ro +ymazPo(S',a) // mazPo(S’,a) is the maximum value of
parameters for the most important opponent’s threats that
can be created from the new state §’

S+ S5

until S terminal

until the end of the episode

At each stage of the episode, the alpha-beta algorithm uses the heuristic with the new parame-
ters for actions selection.

4. Experimental results

For the experiments we consider an agent who uses the alpha-beta algorithm and the generic
heuristic (heuristic with the parameters automatically updated with the Q-learning) to a depth
limit of 4. We conducted numerous tests to determine the time that would allow the proposed
solution to provide a set of stable parameters. After analyzing the results, we make the intelligent
agent play against itself for 5 episodes because from this level, the parameters seem not to change
anymore and each of them seems to have been updated at least once.

Generic heuristic for the mnk-games 271

For Gomoku, we check the performance by playing against a player who uses alpha-beta and
Shevchenko’s heuristic [8]. For Tic tac toe, we compare the improved heuristic and Chua Hock
Chuan’s heuristic [5].

We conducted several tests grouped into categories. For each game considered, we distinguish
three (03) categories based on the number of pieces to be aligned to win the game : category 1 with
k = 3; category 2 with k£ = 4; and category 3 with k = 5. For each category, we vary the size of
the board with m = n and the tests are done for according to the player who starts the game. The
maximum size is 11.

4.1. Gomoku : Improved heuristic vs Shevchenko’s heuristic

4.1.1, Category1:k=3

See Table 1 and Table 2.

With k£ = 3 the first player always wins the game no matter the size of the board with one
exception because for a size of 7 our approach wins the party as a second player. It defended
herself and created advantageous situations. We conclude that for k = 3, the first player has an
advantage that leads him to victory. For better analysis, we change k.

4.1.2. Category2:k=4

See Table 3 and Table 4.

With k& = 4, our approach always wins the game it plays first or not for a size bigger than k. It
is very effective at this level.
4.1.3. Category3:k=5

See Table 5 and Table 6.

With k£ = 5, our heuristic always wins the game when it plays first or not for a size over k.
It is more efficient than Shevchenko’s heuristic even if the game ends with a draw when it plays
second for k = 5.

According to those three analysis, we conclude that the player using the improved heuristic
won the most games regardless of the number of pieces to be aligned and the size of the board.
Our heuristic has proven its efficiency against Shevchenko’s heuristic.

4.2. Tic tac toe : Generic heuristic vs Chua Hock Chuan’s heuristic

4.2.1. Category1:k=3

See Table 7 and Table 8.

As second player, the generic heuristic is totally out of date and is not effective as first player.
4.2.2. Category2:k=4

See Table 9 and Table 10.
Analysis 5 : With k = 4, our approach always wins the game no matter it plays first or not for
a size bigger or equal to 6. It concedes no defeat. This number of pieces to align is favorable.

4.2.3. Category3:k=5

See Table 11 and Table 12.

Our approach always wins the game no matter it plays first or not for a size bigger than or
equal to 8. It concedes no defeat. Just like k£ = 4, k = 5 is good for our approach.

The Chua Hock Chuan’s heuristic [5] showed the effectiveness of the latter for k¥ = 3 but our
approach was successful for & > 3.

272 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

5. Conclusion and perspectives

In this work, we have determined a generic evaluation function for mnk-games to solve all
games in this category with the same solution. Then we have proposed a method for determining
the parameters of the generic heuristic using machine learning to obtain better parameters for
each game considered. It is based on the functioning of Q-learning, which is an "off-policy" TD
control algorithm. We combined the improved heuristic, Shevchenko’s heuristic and Chua Hock
Chaun’s heuristic with the alpha-beta algorithm to make a comparison on Gomoku and Tic tac
toe. The results of the tests showed that at different levels the improved heuristic is on average
more efficient.

As future works we would like to intensively compare our generic heuristic on a large variety
of mnk—games wrt other heuristics. A good perspective of this work is to determine some ele-
ments to improve the approach proposed by focusing on the eligibility traces associated with TD
methods [4]. We can also automatically learn the winning strategies used in games played for each
mnk—game.

6. Bibliographie

[1] L.V. ALLIS, H.J. VAN DEN HERIK, M.P.H. HUNTJENS, Go-moku solved by new search techniques, Com-
putational Intelligence, 12(1), p.7-23., 1996.

[2] ANDREW G. BARTO, Temporal difference learning, www.scholarpedia.org/article/Temporal_difference_learning,
2007.

[3] TRISTAN CAZENAVE, Des Optimisations de 1’Alpha-Beta, Laboratoire d'Intelligence Artificielle, Dépar-
tement Informatique, Université Paris 8, 2011.

[4] TRISTAN CAZENAVE, A Generalized Threats Search Algorithm, International Conference on Computers
and Games. Springer, Berlin, Heidelberg, 2002.

[5] CHUA Hock CHUAN, Java Games, http :/fwww3.ntu.edu.sg/home/ehchua/programming/java /Java-
Game_TicTacToe_AlLhtml, 2017.

[6] SAMUEL H. FULLER, JOHN G. GASCHNIG, Analysis of the alpha-beta pruning algorithm, Department of
Computer Science, Carnegie-Mellon University, 1973.

[71 H.J VAN DEN HERIK, J.W.H.M UITERWIJK,].V RIJSWIJCK, Games solved : Now and in the future, Arti-
ficial Intelligence, Vol. 134, p. 277-311, 2002.

[8] MYKOLA SHEVCHENKO, GOMOKU & Minimax-alphabeta search,
https ://github.com/nshevchenko/GomokuAlphabeta/blob/master/gomoku-minimax-alphabeta.pdf, 2016.

[9] OLIVIER SIGAUD, OLIVIER BUFFET, Markov Decision Processes in Artificial Intelligence, The MIT Press Cam-
bridge, Massachusetts, 2010.

[10] RICHARD S. SUTTON, Learning to Predict by the Method of Temporal Differences, Machine Learning, vol.3,
p.9-44, 1988.

[11] RICHARD S. SUTTON, ANDREW G. BARTO, Reinforcement Learning : An Introduction, The MIT Press
Cambridge, Massachusetts, 2012.

[12] J.W.H.M UITERWIJK, H.J VAN DER HERIK, The advantage of the initiative, Information Sciences, p. 43-58,
2000.

[13] CHRISTOPHER WATKINS, PETER DAYAN, Q-learning, Machine Learning, p. 279-292, 1992.

[14] I-CHEN WU, DEI-YEN HUANG, A New Family of k-in-a-row Games, Advances in Computer Games,
2005.

7. Appendix

7.1. Gomoku experimental results

7.1.1. Category1: k=3

Generic heuristic for the mnk-games 273

Tableau 1. Gomoku : Generic heuristic vs Shevchenko’s heuristic for k = 3, test n’1

Players First Player Taille € [3,11]
Alpha-beta + generic heuristic Yes Win
Alpha-beta + heuristic of Shevchenko No Loss

Tableau 2. Gomoku : Generic heuristic vs Shevchenko’s heuristic for k = 3, test n’2

Players First player Taille € {3,4,5,6,8,9,10,11} Taille =7
Alpha-beta + generic heuristic No Loss Win
Alpha-beta + heuristic of Shevchenko Yes Win Loss
7.1.2. Category2:k=4
Tableau 3. Gomoku : Generic heuristic vs Shevchenko'’s heuristic for k = 4, test n°3
Players First player Taille = 4 Taille € [5,11]
Alpha-beta + generic heuristic Yes Draw Win
Alpha-beta + heuristic of Shevchenko No Draw Loss
Tableau 4. Gomoku : Generic heuristic vs Shevchenko'’s heuristic for k = 4, test n’4
Players First player Taille = 4 Taille € [5,11]
Alpha-beta + generic heuristic No Draw Win
Alpha-beta + heuristic of Shevchenko Yes Draw Loss

7.1.3. Category3:k=5

Tableau 5. Gomoku : Generic heuristic vs Shevchenko’s heuristic for k = 5, test n°5

Players First player Taille € [5,11]
Alpha-beta + generic heuristic Yes Win
Alpha-beta + heuristic of Shevchenko No Loss

274 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Tableau 6. Gomoku : Generic heuristic vs Shevchenko’s heuristic for k = 5, test n°’6

Players First player Taille =5 Taille € [6,11]
Alpha-beta + Generic heuristic Draw Win
Alpha-beta + heuristic of Shevchenko Draw Loss

7.2. Tic tac toe experimental results

7.2.1. Category1: k=3

Tableau 7. Tic tac toe : Generic heuristic vs Chua Hock Chuan’s heuristic for k = 3, test n°7

Players First player Size =3 Size = {4,6,7} Size = {5,8,9,10,11}
Alpha-beta + generic heuristic Yes Draw Loss Win
Alpha-beta + heuristic of Chua No Draw Win Loss
Hock Chuan

Tableau 8. Tic tac toe : Generic heuristic vs Chua Hock Chuan’s heuristic for k = 3, test n’8

Players First player Size =3 Size € [4,11]
Alpha-beta + generic heuristic No Draw Loss
Alpha-beta + heuristic of Chua Yes Draw Win
Hock Chuan

7.2.2. Category2:k=4

Tableau 9. Tic tac toe : Generic heuristic vs Chua Hock Chuan’s heuristic for k = 4, test n°9

Players First player Size = {4,5} Size € [6,11]
Alpha-beta + generic heuristic Yes Draw Win
Alpha-beta + heuristic of Chua Hock No Draw Loss
Chuan
Tableau 10. Tic tac toe : Generic heuristic vs Chua Hock Chuan’s heuristic for k = 4, test n’10
Players First player Size = {4,5} Size € [6,11]
Alpha-beta + generic heuristic No Draw Win
Alpha-beta + heuristic of Chua Hock
Yes Draw Loss

Chuan

Generic heuristic for the mnk-games 275

7.2.3. Category3:k=4

Tableau 11. Tic tac toe : Generic heuristic vs Chua Hock Chuan’s heuristic for k = 5, test n"11

Players First player Taille € [5,7] Taille € [8,11]
Alpha-beta + generic heuristic Yes Draw Win
Alpha-beta + heuristique de Chua No Draw Loss
Hock Chuan

Tableau 12. Tic tac toe : Generic heuristic vs Chua Hock Chuan’s heuristic for k = 5, test n°12
Players First player Taille = {5,6} Taille € [7,11]
Alpha-beta + generic heuristic No Draw Win
Alpha-beta + heuristic of Chua Hock
Chuan

Yes Draw Loss

