276

CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Scaling the ConceptCloud Browser to Large
Semi-Structured Data Sets

Joshua Berndt, Bernd Fischer, Arina Britz

CSIR Center for Al Research
Stellenbosch University
South Africa

RESUME. Les ensembles de données semi-structurés, tels que les révisions de produits ou les don-
nées de journaux d’événements, deviennent simultanément plus largement utilisés et en méme temps
de plus en plus volumineux. Cet article décrit ConceptCloud, un navigateur interactif flexible pour les
ensembles de données semi-structurés, mettant 'accent sur les modifications architecturales a une
architecture basée sur serveur apportées pour accommoder des ensembles de données en constante
croissance. ConceptCloud utilise une combinaison d’'une visualisation intuitive du nuage de tags avec
un treillis des concepts sous-jacent pour fournir une structure formelle pour la navigation dans un
ensemble de données sans connaissance préalable de la structure des données ou compromettre
I'évolutivité.

ABSTRACT. Semi-structured data sets such as product reviews or event log data are simultaneously
becoming more widely used and growing ever larger. This paper describes ConceptCloud, a flexible
interactive browser for semi-structured datasets, with a focus on the recent trend of implementing
server-based architectures to accommodate ever growing datasets. ConceptCloud makes use of an
intuitive tag cloud visualization viewer in combination with an underlying concept lattice to provide a
formal structure for navigation through datasets without prior knowledge of the structure of the data
or compromising scalability. This is achieved by implementing architectural changes to increase the
system’s resource efficiency

MOTS-CLES : architecture client-serveur, données semi-structurés, nuage de tags, treillis de concepts

KEYWORDS : client-server architecture, semi-structured data, tag cloud, concept lattice

Scaling the ConceptCloud Browser to Large Semi-Structured Data Sets

1. Introduction

ConceptCloud [5] is a visualisation and exploration tool for semi-structured data sets,
such as software revision control meta-data or product reviews. It uses a concept lattice
[2] built from the data set as underlying navigation structure but presents the data itself in
form of a tag cloud that concisely summarizes the users current selection in one view and
allows further navigation through tag selection and deselection, without constricting the
user to pre-defined search paths.

ConceptCloud began as an interactive browser based tool for Git and SVN reposito-
ries [1, 4] and has been extended to accept further semi-structured data sets in XML and
JSON files. However, its application to large data sets (e.g., the ACM Digital Library,
see [6]) have shown the limitations of its original client-based architecture. We have thus
re-designed and re-implemented the system to use a new server-based architecture, which
also necessitated some user interface changes. In this paper we describe the new architec-
ture and interface and show that it yields 10x performance improvements. Specifically, we
present the formal background for the ConceptCloud System, limitations of the original
implementation, changes made, and preliminary experimental results over a wine review
data set.

2. Formal Concept Analysis

Formal Concept Analysis (FCA) is a theory of data analysis that uses lattice-theoretic
methods to investigate abstract relations between objects and their attributes. In FCA,
information is represented as a binary cross table, or context, where the rows denote ob-
jects, eg. products and the columns attributes eg. price or ratings. ConceptCloud uses the
concept lattice derived from semi-structured data as its navigation structure. An incidence
relation 7 indicates which objects in the table have which attributes.

Definition 1 A formal context is a triple (O, A, L) where O and A are sets of objects and
attributes, respectively, and T C O x A is an arbitrary incidence relation.

Definition 2 Let (O, .A,Z) be a context, O C O, and A C A. The common attributes of
O are defined by a(O) = {a € A|Vo € O : (0,a) € T}, the common objects of A are
denoted by w(A) = {o € O|Va € A: (0,a) € T}.

Formal concepts are pairs of objects and attributes (O, A), where O C O and A C A
such that O is the set of all objects that have all attributes from A and A is the set of
attributes that are common to all objects in O.

Definition 3 Let C be a context. ¢ = (O, A) is called a concept of C iff a(O) = A and
w(A)=0. m7o(c):=0 and my(c) := A are called extent and intent of c, respecti-
vely. The set of all concepts of C is denoted by B(C).

Concepts are partially ordered by inclusion of extents such that a concepts extent
includes the extent of all of its subconcepts ; the intent-part follows by duality.

Definition 4 Let C be a context, c; = (O1, A1), ca = (O3, A2) € B(C). ¢; and cy are
ordered by the subconcept relation, ¢y < co, iff O1 C O or equivalently, Ay C Ay . The
structure of B(C) and < is denoted by B(C).

277

278

CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

The basic theorem of FCA states that the structure induced by the concepts of a for-
mal context and their ordering is always a complete lattice [2]. Such concept lattices have
strong mathematical properties and reveal structural and hierarchical properties of the ori-
ginal data. They can be computed automatically from any given relation between objects
and attributes. The greatest lower bound or meet and least upper bound or join can also
be expressed by the common attributes and objects.

Theorem 1 Let C be a context, then B(C) is a complete lattice, called the concept lattice
of C. Its meet and join operation for any set {{A;, B;)|i € I} C B(C) of concepts are
given by :

Nier(0i, Ai) = (Nie; Ois @ (WU € 14))))

Vier(0i; Ai) = (W(a(Uic; 0)); Nier Ai)

Each attribute and object has a uniquely determined defining concept in the lattice.
The defining concepts can be calculated directly from the attribute or object, respectively,
and need not be searched in the lattice.

Definition 5 Let B(O, A, T) be a concept lattice. The defining concept of an attribute
a € A is the greatest concept ¢ such that a € w4(c) holds. It is denoted by p(a). The
defining concept of an object o € O is the smallest concept ¢ such that o € wo(c) holds.
It is denoted by o(0).

Efficient algorithms exist for the computation of the concept lattices and the meet and join
of concepts in the lattice [3]. For a detailed introduction to FCA see [2].

3. ConceptCloud

ConceptCloud [5] is a browser for semi-structured datasets which allows the user to
navigate, via tag clouds, through a dataset in what is known as an explorative search. This
type of exploration requires no predefined knowledge of the domain or dataset. The user
iteratively selects an attribute or object tag in a tag cloud, and the ConceptCloud system
adjusts the tag cloud to display all other tags attached to objects possessing the selected
attribute tag(s). This is achieved by maintaining a focus concept from which a tag cloud
is created.

Formally, the focus concept ¢ = (O, A) is the concept whose extent is the set of
objects that share the set of currently selected attributes, F', within the tag cloud, such that
a(w(F)) = ma(c) = A. the new focus concept. concept and A new is the attributes of
the new focus concept.

The focus concept can be further refined by iteratively adding elements to F'. When an
additional attribute is added to F, we update the focus concept by computing the meet, as
per Theorem 1, of the current focus concept ¢ and the concept introduced by the additional
attribute. In Section 4 we will discuss how this was changed.

The explorative search process corresponds to the process of stepping through a concept
lattice, wherein the selection of an attribute moves us to the point in the lattice where all
linked objects contain that attribute. As we select further attributes we move further down
the lattice. If we deselect an attribute we move back up the lattice and have access to
a different set of attributes and objects. This corresponds to the refinement of the focus
concept by adding and removing elements from F'. This approach was tested in a user
study conducted in [6] and found that users were able to answer complex scientometric

Scaling the ConceptCloud Browser to Large Semi-Structured Data Sets

questions using ConceptCloud with a mean correctness of 73%, with the users’ prior re-
search experience having no statistically significant effect on results. For further detail see
[1]. ConceptCloud presents the data in the form of a tag cloud, where the frequency of
each tag denotes its importance. Each tag cloud is a word cloud-like window, wherein all
of the objects and attributes in the lattice are represented as tags, words whose size denote
their importance within this window. More specifically in ConceptCloud, each tag in a
tag cloud’s size is based on the frequency of its occurrence within the sub selection of the
dataset, coloured differently based on its category (namely the type value of the attribute
or object). Tag clouds are constructed, to help distinguish the different properties of the
data set, by taking the extent of the focus concept ¢ = (O, A), then for each o; € O, we
determine its defining concept c;, see Definition 5. We then collect all the intents of these
defining concepts. These are the attributes we display in the tag cloud. Finally we add the
objects to the tag cloud so that they may be directly selected or searched within the tag
cloud. Our initial focus concept will have no selected attributes, and thus the tag cloud
created from it will contain tags representing all attributes and objects. Formally we have
(here W denotes multiset union) :

Definition 6 The tag cloud from a concept ¢ = (0, A) € B(C) is defined as T (c) =
OWlY,cp ma(a(0)).

By constructing the objects in the tag cloud, we induce subconcepts of the focus concept,
from which the tag cloud was derived, and all concepts having a non-bottom meet with
that focus concept.

The initial implementation of the ConceptCloud system was geared towards explora-
tion of the metadata of software repositories [1, 5]. As such it was not built with scaling
in mind since the metadata within a software repository forms a comparatively small
semi-structured dataset. When the use of the application shifted from analysis of these
repositories to analysis of other semi-structured datasets[6], it became apparent that some
of the design choices initially made were no longer feasible. One such choice was to have
each tag cloud display tags representing all attributes and objects without any limit. The
lack of a display limit also exists in the displayed representation of the context table,
which too will display all attributes and objects. In practice this is increasingly resource
intensive for larger datasets.

4. Scalable ConceptCloud Architecture

In order to reduce the resource intensive nature of ConceptCloud, changes to the initial
implementation had to be made. A fixed sized subset of all tags was selected to represent
the underlying concept lattice. This in turn necessitated a way for the user to interact with
tags that may not be displayed in the initial window. The logical choice was to incorporate
autocomplete based search functionality, as mentioned in Section 4.2. For this to function
correctly a caching structure and separation of the data in memory was required. For this
we implemented a postgresql database, which table’s are generated based off the structure
of the input dataset. The number of tags in a tag cloud was limited to the top 5000 tags, by
frequency in the extent of the focus concept for that tag cloud. This limit was imposed to
maintain a functional interface and not overwhelm the user. Additionally the attributes to
be displayed in the context table representation was configured and limited. The context
table representation, known as the table view limits the displayed results but allows the
user to page through the list of all results. Finally the system creates its concepts on the

279

280

CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

fly, meaning that the overhead of creating the full lattice is avoided, allowing for generally
responsive tag cloud creation and rendering.

The architectural changes presented are a generalization of the architecture used in
[6], a highly specialized version of ConceptCloud used to visualize the DBLP, Computer
Science Bibliography. This dataset, at the time of writing, has over 4 million records. The
scalable ConceptCloud Architecture presented is not specialized to any specific dataset
and may be used for any well formed JSON dataset. It will correctly generate the required
caching databases and create the required tag clouds. Additionally the user interface was
updated to better function with the new architecture.

4.1. ConceptCloud User Interface

&> conceptCloud Browser

«

Navigation:

Yeamye JE s REEEE N e aa e E e R R N e e A e E] s
” Ve b

Paarl
Stellenbosch

1 Robe

4 Stellenbo:

Figure 1. Navigation User Interface

The navigation user interface consists of the following components :

— The main window (1) wherein the tag clouds are displayed. On initial execution this
displays the initial tag cloud viewer with the default focus. The tag cloud within the main
window displays the top 5000 most relevant tags. A user selecting a tag in this window
causes the focus concept to be recalculated and the viewer to then display the point in the
lattice wherein the updated focus concept is relevant.

— The Navigation Menu (2) provides the user with various utilities relating to saving
the lattice as well as uploading a ConSL script [4] to automate the display of the viewers.
The further options allow the user to change the scaling of the tags within the tag cloud
viewers. 4.1.

— Search Functionality (3) was introduced as only the top 5000 tags are displayed in
the main window, the user may wish to interact with tags that are not currently displayed.
As the user inputs their search terms, ConceptCloud displays an auto-completed list of
terms and their category. This is done by making use of the caching database. Selecting
one of these terms updates the focus concept, and as a result, the main window together
with any other tag cloud viewer that contains the selected term as its focus concept. This
action is identical to if they were to select a displayed tag in the main window.

Scaling the ConceptCloud Browser to Large Semi-Structured Data Sets 281

— Sticky Tag Cloud Viewers (4) are sub-windows of the main window that contain each
displayed tag cloud, and once created always appear below the main window, they can
however be moved from their initial position. Each Sticky Tag Cloud Viewer contains the
displayed tags for the sticky concept for that viewer, referred to as the sticky tag. A sticky
tag is an object or attribute to which the viewer is fixed. Selecting a new focus concept
will adjust these windows to use the union of the sticky and selected focus concept as
their focus concept. The sticky tag is displayed next to the Tag Cloud viewer’s menus in
red. The menus exist to adjust the display of the contained tags. These viewers allow the
user to have multiple differentiated views, eg. viewing the ratings of wines across multiple
vintages, with a window for each vintage or rating.

—The Table View (5) displays the underlying context table for the concept lattice
connected to the initial tag cloud viewer. Selecting and deselecting tags will cause this
to update to reflect the concept table corresponding to the concept lattice of the focus
concept(s). In many datasets there is a multitude of attributes for each object in the context
table, often too many to display concisely. The attributes to be displayed in the Table View
can be configured to solve this. The results appear in a fixed page size list, further easing
resource usage.

4.2. Navigation Architecture

O | Recompute Other Displayed Tag ‘

[Clouds
Select/Deselect Tag Get new Focus 1
S From TagCloud Concepts I Cancept Lattice I
SelectDeselect Tag / i | B Y

From Search / | !

i Recalculate focus concept | [=]
Concept LamceJ

T] |_,"— [
Search Functionality 5 ——_ B g
' Display Tag Cloud L Sl R - I
in Window f f |—

Load Result From Cache Update Focused Concept

Defauk Focus |

Display Updated Viewers
(. 2
Caiabase |
Cache

! Viewer Builder <—1Update Related Viewers:

Figure 2. Navigation Architecture

An explorative search in ConceptCloud is the process whereby the user selects and
deselects tags in a tag cloud allowing them to step through the underlying concept lattice.
The user is additionally able to create sub windows, which are additional tag cloud vie-
wers with stickied tags. These sub windows have one attribute set for it and will display
the related subsection of the concept lattice. Selecting a new focus concept from a tag in
any of the viewer windows, including the initial tag cloud, causes the selected tag union
with stickied tag for each window (as the tag represents either an attribute or an object),
to become the focus concept of each viewer. The related portion of the lattice is displayed
if stickied tag and new focus concept are not disjoint. Otherwise an empty viewer window
is displayed. The architecture of the navigation subsystem is outlined in figure 2. Limiting
the displayed tags necessitated that we have two ways to interact with the tags. One based
directly on the selection of a displayed tag in a tag cloud, and another based on searching
for a tag that may or may not be displayed within a tag cloud. In this way we are able

282

CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

to maintain the original ConceptCloud functionality. The architecture of the navigation
subsystem is shown in Figure 2 :

— Select / Deselect Tags from the tag cloud : The user clicks a tag within one of the
displayed tag clouds, this then causes all tag cloud windows to take this new selected tag
and use it to recalculate their focus concept, causing each tag cloud window/viewer to
update their controllers to request the relevant section of the underlying concept lattice
should it exist. A new tag cloud is then constructed by the viewer builder and displayed,
in the case of multiple concepts, if no intersection in the lattice between these concepts
exists, an empty tag cloud is displayed in the corresponding viewer. Deselection of a tag is
when the user clicks the highlighted red tag in the tag cloud, this removes it from all the tag
cloud window’s focus concept and updates the lattice for each window accordingly.These
actions correspond directly to the explorative search mentioned in Section 3.

— Select / Deselect Tag From Search : An autocomplete based search which starts au-
tocompletion after three characters, providing the user with the tag name and the category
in which they wish to search. As the user enters text into the search bar, the search func-
tionality performs a lookup in the database cache, and provides a list of closest tag name
matches, and their categories to the user in the form of a dropdown list. The user may
then click a tag from the list. From this point onwards the system acts as if a tag had been
selected from a tag cloud as before. All tag cloud windows add the selected tag to their
focus concept and all underlying lattices are updated. The viewer builder constructs new
viewers with the updated lattice sections, causing all tag clouds to be updated with the
relevant data. Deselection works identically as above.

4.3. Experiments

To show the difference in the architectures, we ran a series of experiments with a
typical application driven semi-structured dataset. A series of typical user actions were
taken, automated and then timed to display the differences in execution times for the
different architecture.

The dataset used, contained 16306 wine reviews, where each review has the following
attributes : name, varietal, vintage, review year, review, reviewer, points, price, country,
location, region, winery, review phrases. Where the final field, review phrases, is a key-
phrase extraction of the review field. This dataset was chosen as it succinctly displays the
difference in performance between the two architectures.

For the experiments the following actions serve as our experiments ; initial rendering
and the creation of new windows for high, medium and low volume tags. All times given
are in milliseconds. These are all run on a machine with the following processing specifi-
cations, a 6th Generation Intel Core 17-6700HQ (3.5GHz) and 8Gb DDR4 2133Mhz.

For each architecture, the server and client response times are measured. The results,
averaged across 20 runs were as follows :

User Action Old Architecture (ms) | New Architecture (ms)
Initial Rendering 4863 378
Category Change 182 42
New High Volume Tag Render 7822 488
New Medium Volume Tag Render 4904 374
New Low Volume Tag Render 4218 314

The user actions carried out involved the following ; changing the category filter to va-

Scaling the ConceptCloud Browser to Large Semi-Structured Data Sets

rietal, creating a new tag cloud with the United States as the high volume tag (count of
5335), creating a new tag cloud with 2005 vintage as the medium volume tag (count of
1782) and creating a new tag cloud with 2001 as a vintage for the low volume tag (count
of 190).

‘We note that for each action the execution time is in each case at least an order of ma-
gnitude faster for the server-based architecture when compared to the same operation on
the old architecture, on an identical dataset. The large speedup is due to the much lower
resource cost of the new architecture, as we are no longer rendering the entire dataset,
but only the top 5000 tags and a far smaller table view. Even when rendering less than
5000 tags, the fact that the initial cloud and table view are so resource intensive in the old
client-based architecture means creating any additional tag clouds will suffer. The new
server based architecture does not have have this issue.

5. Future Work

In this paper we described ConceptCloud, an interactive browser for semi-structured
datasets and the changes made to it to enable it to more easily deal with large datasets. We
showed that changes made resulted in a large speedup that made using large datasets fea-
sible. For future work there are plans to move the ConceptCloud application from a client
server application using a web client, to a client server with a mobile client. Currently we
are working on adding support for processing ontological datasets, and using ontologies
to enrich the data within the dataset. Finally we are adding support for geolocation data,
and specialized interactions such as opening a tag on a map based on it’s geolocation.

6. Bibliographie

[1] G J. GREENE AND B. FISCHER, « Interactive Tag Cloud Visualization of Software Version
Control repositories », Software Visualization (VISSOFT), 2015 IEEE 3rd Working Conference,
2015.

[2] B. GANTER AND R. WILLE, « Formal Concept Analysis - Mathematical Foundations », Sprin-
ger, 1999.

[3] ZAKI, MOHAMMED AND HSIAO, CHING-JUI AND OTHERS « CHARM : An Efficient Algo-
rithm for Closed Association Rule Mining », 1999.

[4] GJ. GREENE, M. ESTERHUIZEN, B. FISCHER « Visualizing and Exploring Software Version
Control Repositories using Interactive Tag Clouds over Formal Concept Lattices », Information
& Software Technology volume volume 87, 223-241 Elsevier, 2017.

[S] G J. GREENE, B FISCHER « Conceptcloud : A Tag Cloud Browser for Software Archives. »,
ACM SIGSOFT International Symposium on Foundations of Software Engineering, 22, 759—
762 ACM, 2014.

[6] M. DUNAISKI, G J. GREENE, B. FISCHER « Exploratory Search of Academic Publication
and Citation Data using Interactive Tag Cloud Visualizations », Scientometrics, Volume 110(3),
1539-1571 Elsevier, 2017.

283

