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RESUME. Le niveau d’eau dans les riviéres, les lacs et les réservoirs a une grande influence sur
les interactions entre les proies et les prédateurs. En effet, 'augmentation du volume d’eau réduit la
capture de la proie par le prédateur. Le méme raisonnement s’applique lorsqu'il y a une diminution du
volume d’eau, favorisant la capture de la proie par le prédateur. Lobjectif de cet article est d’étudier les
propriétés dynamiques d’un modéle prédateur-proie avec des prélévements a taux constant non nul
et soumis a des fluctuations du niveau d’eau dans un lac. Cette étude est importante pour comprendre
le comportement et la dépendance des espéces a une variation saisonniére du niveau de I'eau. Des
conditions ont été établies pour la coexistence et I'extinction des espéces. Les principaux résultats
ont été illustrés par des simulations numériques. Les résultats de cette étude démontrent comment
les variations du niveau d’eau peuvent affecter la répartition des espéces de poissons

ABSTRACT. Water level in rivers, lakes and reservoirs has great influence on the interactions between
prey and predator fish. Indeed, the increase of the water volume hinders the capture of the prey by the
predator. The same reasoning applies when there is a decrease in the volume of water, favoring the
capture of the prey by the predator. The objective of this paper is to study the dynamical properties
of a predator-prey model with nonzero constant rate prey harvesting and subject to fluctuating water
level in a lake. This investigation is important to understand the behavior and dependence of species
on a seasonal variation of water level. Conditions have been derived for for the coexistence and
extinction of species. Main results have been illustrated using numerical simulations. The results of
this study demonstrate how water level variations can affect the distribution of fish species

MOTS-CLES : Modéle prédateur-proie, stabilité, lac de Pareloup
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1. Introduction.

Lac de Pareloup is a lake in Aveyron, France. It lies on the Lévézou plateau, 25 km
south east of Rodez. This is the fifth largest hydroelectric reservoir by area in France
having an area of 1260 hectares. Two interdependent fish species account as the most
important species living this lake, They are the Roach species as prey (Gardon in French)
and Pike species as predator (Brochet in French). The water level of Pareloup lake is
regulated, mainly for hydroelectric purposes. The water level is lowered by increasing
discharge in winter, when the consumption of electricity is highest. In the spring, snow
melts refilling the lakes with the aid of the reduced discharge and the water level is usually
kept quite constant over the summer until late summer. The management of this lake is of
considerable ecological importance. Significant variations of the water level of the lake
can have a strong impact on the persistence of some species. Indeed, when the water level
is low, in winter, the contact between the predator and the prey is more frequent, and
the predation increases. Conversely, when the water level is high, in the spring, its more
difficult for the predator to find a prey and the predation decreases. In [4], the authors
examine how seasonal variations in water level affect the outcome of a predator-prey
interactions in Pareloup Lake. More recently, in [6] the authors assume that both species
are subjected to harvesting and discuss the effects of water level and harvesting on the
survival of the two species. All these studies demonstrate that the dynamics of the systems
depends heavily on the fluctuation of the water level and give some valuable suggestions
for saving the species and regulating populations when the ecological and environmental
parameters are affected by periodic factors.

In this paper, we assume that the predator is not of commercial importance. The prey is
continuously being harvested at a constant rate by a harvesting agency. The harvesting
activity does not affect the predator population directly. It is obvious that the harvesting
activity does reduce the predator population indirectly by reducing the availability of the
prey to the predator. Let G(¢) and B(t) are respectively the densities of the prey and
predator at time ¢. We make the following assumptions :

(A1) In the absence of predator, prey growing logistically with a growth rate yg.

(A2) In the absence of prey, predator population declines exponentially.

(A3) The predator need a quantity g for his food, but he has access to a quantity of food
depending on the water level equal

r G
HB+D’
where 7 is a positive constant, D measures the other causes of mortality outside the me-
tabolism and predation and H is the water level of the lake. The minimum value of H is
reached in autumn and the maximum value is attained during the spring. If
r G
HB+D

then the predator will be satisfied with the quantity yp for his food. Otherwise, i.e if

> VB,
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Consequently, the quantity of food received by the predator is

min (%B’-l-LD”YB)'

Considering the above basic assumptions we can now write the following dynamical sys-
tem :

2 =600 (o = maG(0) ~ min (55 L vm ) BO - @
(1]
% = —mpB(t) + min (%B(f)%”m) B(t).

where e is the conversion rate and () represents the rate of harvesting (Q > 0).

The objective of this paper is to study the dynamical properties of the predator-prey mo-
del with constant harvesting. It will be better for us to determine how the water level and
constant harvesting affect the dynamics of system (1).

Let By, Gy be respectively the initial density of the predator and prey with By > 0 and
Go > 0. We denote by

r Gy T ((7@* +mp)? - 4mGQ)
v8 (Bo + D)’ 4mgmpypD

_ er [
Hy = 2magmpD (7G e 4mGQ)’
er
Hy=——" \/Y2 —4 .
2 2mampD (’YG tV% mGQ)

and we assume :

Hy = max

%(%) <Q<min(mip,%), 2]

H > H, (3]

2. Mathematical analysis and main result

Proposition 1 All the solutions of system (1) which initiate in Ri are uniformly bounded.

Proof. See Appendix A.

To simplify our analysis, we rewrite system (1) in a simpler form. We prove the follo-
wing result.

Proposition 2 Under hypothesis (3), we have %G(t) < vp(B(t) + D), vVt > 0.



76 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

Proof. See Appendix B.

Consequently system (1) is reduced to the simple form

2 =60 (1~ maG(0) - o IoD —Q, .
4B _ v GOBO) oo

dat ~“HB®)+D

3. Local stability analysis of the steady states.
We now explore the existence and stability of boundary and positive equilibria of

system (4)

Proposition 3 System (4) has the following equilibria :

_\/ﬁ
— P, = (G1,0) , where G, = e G mGQ.

2mg

\/_QT
‘P2=(G2,0),whereG2=7G+ g — 4mecQ

ZmG
and an interior equilibrium P* = (G*, B*), where

(o—5) +V 0o —5) +4ma (222 —Q) o
T , B* = G* - D.

G = mBH

It is easy to see that a necessary and sufficient condition for the existence of the interior
equilibrium P* is :
H, < H < H,. [5]

3.1. Stability Analysis

Now we study the nature of these equilibria. The Jacobian matrix associated to (4) is

given by
9 r B —-r GD
TeT ST T HB+D  H (B+D)?
J(G,B) =
er B et E__GD
HB+D BT H([B+D)2

‘We obtain the following results

Proposition 4 o The axial equilibrium point P; is always unstable.
o The axial equilibrium point P; is stable if H > H otherwise, it is a saddle point.

The proof is trivial and we omit it.
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Figure 1. Extinction of the predator when H > H, = 40. The parameter values are :
Yo = T;mag = 0.02;mp = 7.5;e = 0.2;r = 50; D = 10; H = 60; @ = 300.

Proposition 5 If condition (5) holds, and

H,< H 1 < H2,
where H, = L, then the coexistence equilibrium P* when it exists, it is locally asymp-
Y
totically stable.
Proof. See Appendix C.

Figure 2. The densities of each species plotted against time when H, = 2.85 < H <
H, = 8.93. The figure demonstrates the stability of the system (4) around the equilibrium
(270.25,13.24). The parameter values are : y¢ = 7;mg = 0.02;mp = 5;e = 0.2;7 =
20; D = 30; H = 5; @ = 100.

Proposition 6 If condition (5) holds, and if
Hi < H, < HQ,

then there exists H such that, ~
H,; < H < Hy,
and
e when Hy < H < H, P* is unstable.
e when H < H < Hy, P* is locally asymptotically stable.

Proof. See Appendix D.
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4. Global stability of P*

To investigate the global behavior of system (4) we first prove that system (4) around
P* has no nontrivial periodic solutions. The proof is based on an application of a diver-
gence criterion [3]. Let F(G, B) = g5 Obviously F(G,B) > 0if G >0, B >0

‘We define :
B
£1(G,B) = G(t) (v6 — maG(1)) - %% —@
_ r G@)B(t
fg(G, B) = eﬁm - mBB(t)7
and 8(Ff)  O(Ff)
A(G,B) = BYe + OB
We find that
1 er G’B 1 *
A(G,B) = =g -maG*+Q - H(B+D?| c5 "

which is less than zero when the interior equilibrium is locally stable for all G > 0,
B > 0. As the solution is bounded, then by Bendixson-Dulac criterion, there will be no

limit cycle in the first quadrant.
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Figure 3. phase space trajectories corresponding to different initial levels.

Now, we are in a position to prove the following theorem.

Proposition 7 Existence and local stability of a positive interior equilibrium ensure that
system (4) around P* is globally asymptotically stable .

Proof. The proof is based on the following arguments :

(a)-System (4) is bounded.

(b)-The axial equilibrium P; is always an unstable saddle point and existence of positive
equilibrium confirms that the axial equilibrium P, is also an unstable saddle point.
(c)-Positive equilibrium P* is LAS when H; < H < Hs.

(d)-System (4) around P* has no non-trivial periodic solutions.
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Biological Implications :
Proposition 4 implies that Model (4) can have the-only prey population being locally
stable at its equilibrium P, when the water level is high (Figure 1).

Proposition 5 implies that Model (4) can coexist at the equilibrium P* if the water le-
vel is between two thresholds (Figures 2 and 3).

5. Existence of cycle limit
Proposition 8 If H; < H < H , then system (4) has at least one limit cycle.

Figure 4. There is a limit cycle arrounding the unstable interior equilibrium point.

Proof. We have shown that all solutions are bounded and if H; < H < H , there
are no asymptotically stable equilibrium point, we can deduce by Poincaré-Bendixson
theorem [3] that there exists at least one periodic orbit (Figure 4).

6. Extinction of species

In this section, we prove a result on the extinction of the prey.
Proposition 9 If H < H., then the population of prey disappears.

Proof. From the first equation of system (4), we have

aG _ T G(t)B(t)_ B T G(t)BO_
e G(t) (va —maG(t)) ABH)+D Q < G(t) (v¢ —meG(t) T Bt D Q
Hence
dG 2 2mgQ BO
o S TmeGT (’YG_ po BO+D>G_Q
Using condition (2) we get

G _y

dt ’

and this leads to the extinction of prey and subsequently that of predators.

79
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7. Conclusion.

Based on the results of this work, it can be concluded that changes in water level have
an impact on the distribution of species. By making some assumptions about biological
parameters, we have reduced our model to a simple form. The boundedness of the system
is established, which, in turn, implies that the system is biologically well posed. The
mathematical analysis presented here, shows that if H is below the level H;, we will have
the extinction of the species and beyond H,, we will have the extinction of the predators.
It remains the level between H; and H,. Here we found two cases, the first when the
level H, is below Hj, in this case the interior equilibrium point if it exist, it is locally
asymptotically stable. The second case is when the H, is between H; and Hj, in which
case we have shown numerically that there exists a H which changes the sign of the trace
and hence the nature of P* will change. Indeed, below H the trace is positive and P* is
unstable. Using Poincaré Bendixon’s theorem we have proved the existence of at least one
limit cycle around P*. Above H, the trace becomes negative and therefore P* is stable.
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Appendice A.

Proof of Proposition 1
We define a function

w = eG + B. [6]
The time derivative of (6) along the solutions of (1) is

dw dG  dB

% it e eG(vg —maG(t)) — Q —mpB
then
dw
Ty +mpw < eG(vg + mp — maG(t)),
This implies that
dw +mpw <
dt BW = M,
_ (e +mB)2
where p = Ime

Applying the theory of differential inequalities [1], we obtain

0<0(6,8) < 2t e Lo, ) -

mp

and for t — oo, we have 0 < w < L.

mp

Hence all the solutions of (1) which initiate in Ri are eventually confined in the
region :

B={(G,B)eR;:w=L+s,v5>o}.
mp

Appendix B

Proof of Proposition 2
Let ,
ult) = G@) —v8(B(t) + D).
Note that 4(0) < 0 by condition (3). It is claimed that w(t) < 0 for all ¢. If this were not
the case, there exists ¢y > 0 such that : u(tp) = 0 and Z—?(to) > 0.
The condition u(ty) = 0 implies that B(to) = 'yLHG(tO) —D.
B

From (1), we get

du r dG dB
= (t0) = 5 (fo) = 15— (to),
and
du . \_ T[T B(to) r 2, T T
& 0=~ [57 + 5] 5y 3 pC0)~gpme (G(t0))*+ 7 bio + ma] #(to) ~ Q-miD.
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It follows that
du rm T T
2 (t0) < == (G(t0))” + 37 e +m] Glto) = 5Q —mevsD,

d
Condition (3) implies that d—ztt(to) < 0 and we obtain a contradiction. This implies that
u(t) < Oforallt > 0.

Appendice C.

Proof of Proposition 5
The Jacobian matrix of (4) evaluated at the equilibrium P*, is given by

. @ G*D
T = er B* er G*B*

HB*+D  H(B*+D)

Let DetJ* and T'r J* be respectively the determinant and the trace associated to J*, then

er B* r G*D
D t * - _ = 2% ST
etJ H (B 1 D) [mgG Q+HB*+D]’
er B* mpD
=—_ "~ _|m G2* _ + :| ,
H (B* + D)? [ ¢ 0t~
which is positive from the above conditions, and
1 2 er (G*)?B*
TrJ* =—|-m¢(G)Y'+Q—-=———],
G+ ( G( ) Q " (B* + D)2

*\2 px*
- 0= o= o -5 TR

Condition (2) and H > H* give that T'rJ* < 0. Hence the equilibrium is locally asymp-
totically stable when H; < H < H».

Appendice D.
Proof of Proposition 6
Because of the difficulty that face us in searching the sign of the trace of J*, we treat

it numerically. We present in the figure 5 the graph of the trace as a function of the water
level H where H is between the levels H; and Hs.
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Trd*

Figure 5. The trace against the level water H

According to this presentation, the trace at the point H; is positive and at the point Ho
it is negative. Moreover, between the levels H; and {{ 2, it is decreasing. Thus, According
to the Intermediate Value Theorem, there exists a H between H; and H> which annuls
the trace and changes its sign. ~

We conclude that if H; < H < H, the trace is positive and therefore the interior
equilibrium point P* is unstable. Otherwise, if H < H < Hj, the trace changes sign and
becomes negative, and then P* is locally asymptotically stable.



