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ABSTRACT. The statistical technique for detecting jumps in the temperature series based on the re-
gression model is favorable for homogenizing the climate data of the northern part of Madagascar.
Thus, we will present the results of the homogenization of the series of maximum and minimum tem-
peratures corresponding to the Antsiranana climate station. The homogenization of the temperature
series is carried out at the monthly and daily scales.

RESUME. La technique statistique pour la détection des sauts dans les séries de températures ba-
sée sur le modéle de régression est favorable pour homogénéiser les données climatiques de la
partie Nord de Madagascar. Ainsi, nous allons présenté les résultats de 'homogénéisation des sé-
ries des températures maximales et minimales correspondant au station climatiques d’Antsiranana.
Lhomogénéisation des séries de températures est réalisée aux échelles mensuelle et quotidienne.
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1. Motivations and introduction

The statistical characteristics of the recordings in a measuring station can undergo
all kinds of artificial disturbances which do not reflect the real variations of the climate:
displacement of stations, replacement of measuring instruments, change of hours of obser-
vations or modification of the immediate environment of the measuring instrument. As a
result, decisions may be made based on data that contains errors. Meteorological network
data are used in most climate variability research. The reliability of these data should be
verified before using them in this area. Indeed, the need for long series of reliable climate
data is increasingly felt in various areas. For example, climate change studies require the
creation of comprehensive databases with which the climate signal can be adequately an-
alyzed, tracked over time and predict future changes with minimal uncertainty of error.
It is also very important to find robust techniques for detecting these artificial biases so
that the data used is as close as possible to the observations that would have been made
without disturbing the measurement conditions. The process of detection and correction
of non-climatic breaks is called homogenization.

2. Data

The data used for this study come from the General Directorate of Meteorology, series
of temperatures (minimum and maximum) at the time step per day from January 1st, 1950
to December 31st, 2008 from the five weather stations located in the Northern region of
Madagasca (table: 1 and the tables:4 to 8)

| Country Number ID  Station Name Longitude Beginning End |
Madagascar 10111 Antsiranana 12°21°04” S 49°17°39”E 1950 2007
Madagascar 21011 Antalaha 14°59°56”S  50°19’12”E 1991 2004
Madagascar 20511 Sambava 14°16°43”S  50°10°29”E 1950 2008
Madagascar 30511 Nossy Be 13°19°05”S 48°1833”E 1950 2007
Madagascar 67295 Vohemar 13°22°22” S 49°59°56"E 1950 2006

Table 1. Characteristics of the base station and its neighbors

3. Methodology

Various homogenization techniques([2], [3], [4], [6]) have been developed to accom-
modate different types of factors such as the variable to be homogenized, the spatial and
temporal variability of the data depending on where the stations are located, the length of
the series and the number of missing data (Aguilar et al., [1]).
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The method we used in this study is based on linear regression models that look for
both jumps and trends. These are models in which the conditions of normality, indepen-
dence and heteroskedasticity of the data are assumed, and which are solved by standard
least squares techniques. Multiple regression is based on the application of several re-
gression models to homogenize temperature series (Vincent, [11]). When the residues are
independent, the applied model fits the data well. If not, adjust with another model. The
discontinuity determination in the basic series is identified with the following model:

o T4 Bz + ...+ Brxik + i+ i=1...p
Yi T8+ Pzt ...+ BTk +e; i=p+1l...n

where y; is the value of the base series at time %, x;; is the value of the reference series
k at time 4. There are n observations and k reference series. The jump location, p, is
determined by adjusting the model for all possible positions and selecting the one with
the smallest sum of residual squares. The choice of the jump position is valid according
to the Fisher test. The estimate of the jump amplitude is given by § and its significant
threshold is calculated according to the Student statistic (Vincent, [11]). A two-phase
regression model can detect a change in mean and / or trend in a series (Solow, [10]).
Either the adjusted model represents a series in which there is a one-point discontinuity
p:
_fnt+Mitet+ i=1...p
Yi _{ T+ Xit+e+ i=p+l...n

where y; is the value of the base series at time ¢, 7y and 7o are the means before and
after the change, A\, and ), are the trends before and after the change and p is the position
of the change. The model residuals are represented by e;. The location of the jump is
determined by least squares. Several changes have been made:

— Easterling and Peterson [6] apply the technique iteratively to detect several jumps
and evaluate the significant thresholds by a multiple permutation procedure [8];

— Lund and Reeves [7] provide a revised Fisher statistic;

— Wang [13] proposes a model in which the slopes are equal before and after the break.
We retained the improved version by Xiaolan Wang based on the maxima ¢ test with
penalty [14] and the maximum F test with penalty [16], nested in a recursive test algorithm
[15].

This method has been used successfully in many studies on the analysis of extremes
of precipitation and temperature around the world (Vincent et al., [12], Aguilar et al., [5];
Meehl et al, [9])

4. Homogenization process

It is almost impossible to be 100% sure of the quality of the past data, an assessment of
homogeneity is always recommended. The best recommended technique is to go through
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the following four steps below:
— Metadata analysis and quality control.
— Creating a series of reference times.
— Detection of change points (jumps).
— Data adjustment.

4.1. Quality control

It is applied to detect and identify errors made in the process of recording, handling,
formatting, transmitting and archiving data.[1]

4.2, Quantiles-Match (QM) adjustment

It aims to adjust the series so that the empirical distribution of all segments of the
trend-removed basic series match (Wang [15]); the value of the adjustment then depends
on the empirical frequency of the values to be adjusted. As a result, the shape of the
distribution is often adjusted, although the tests are supposed to detect jumps in averages;
and the QM adjustment takes into account the seasonality of the change. Also, the annual
cycle, the delay autocorrelation of 1, and the linear trend of the base series were estimated
while explaining all the identified hops (Wang [15]); and the predicted trend for the base
series is preserved in the QM adjustment algorithm.

The homogenization of the monthly temperatures is performed by adjusting the monthly
temperature data observed before the date of the jump by correction factors. These cor-
rection factors are calculated taking into account the position of the jumps and their am-
plitudes obtained from the QM algorithm. The figures (figure: 1) and (figure: 2) represent
the raw monthly temperature data observed and the linear trend jumps by multiphase re-
gression model from 1960 to 2007 .

4.3. Homogenization of monthly series

Figure 1. Non-homogeneous and homogeneous series of maximum monthly tempera-
tures, Antsiranana station
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The process of homogenization allowed us to retain three jumps in the series of max-
imum temperatures (figure: 1) and four jumps in the series of to one minimum tempera-

tures (figure: 2).
Seg Date Amplitude correction factors
1 195307 -0.88 -0.9892
2 195809 -0.5979 -0.1025
3 197704  0.4595 0.4281

Table 2. Maximum temperature correction factors

The tables (table: 2) and (array: 3) present respectively the estimated parameters of
the regression model correction to n phase(s) corresponding to the detected jump in the
series of monthly maximum and minimum temperatures.

The figures (figure: 5) and (figure: 4) represent the distribution of the QM (Quantile-
Match) adjustments of each segment applied, respectively, to the maximum monthly tem-
perature series and minimum.

The analysis of the figures (figure: 1) and (figure: 2) also shows that the smallest
correction (0 < A,, < 0,1°C) made to the monthly temperature series is performed
during all periods, while the largest correction (A, > 1,9°C).
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Figure 2. Non-homogeneous and homogeneous series of minimum monthly tempera-
tures, Antsiranana station

Seg Date Amplitude Correction factors

1 195708 -1.5242 -1.9416
2 1964 04 -0.5371 -0.5075
3 197704  0.6148 0.1057
4 198308 -0.5114 -0.4250

Table 3. Minimum temperature correction factors

The homogenization of the monthly series provides the date and the amplitude of the
breaks detected. Although it is not possible to apply the correcting coefficients to the
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daily data, the dates of the breaks nevertheless make it possible to determine supposedly
homogeneous periods..

5. Discussion

The use of the QM adjustment takes into account the seasonality of the change; it is
possible for the winter and summer temperatures to be adjusted differently because they
belong to different quantiles of the distribution. This is a strong point of the temperature
homogenization method used in this article. In fact, the anthropogenic influence of the
measurement process at the climate station does not have the same impact on the mea-
surement carried out during the different periods of the year.

We calculated the annual average from the homogenized maximum and minimum
daily temperature series. These series are subsequently compared with the series of ho-
mogenized monthly temperatures obtained during the treatment. This comparison allows
us to verify the consistency between the homogenization of annual temperature series and
the homogenization of the monthly temperature series.

For the comparison, we calculated the average temperature per station, during the
period 1950 to 2007, using the two homogenized monthly series. The analysis of the
result clearly shows the coherence between the homogenization of annual temperatures
and monthly temperatures.

6. Conclusion

The process of homogenization allowed us to retain three jumps in the series of max-
imum temperatures (1953 with an amplitude of —0.88°C, 1958 with an amplitude of
—0.60°C' and 1977 with an amplitude of 0.46°C' ) and four jumps in the series of min-
imum temperatures (1957 with an amplitude of —1.53°C, 1964 with an amplitude of
—0.54°C, 1974 with an amplitude of 0.61°C and 1983 with an amplitude of—0.51°C).

From the positions of jumps and their amplitudes, we found the monthly correction
factors corresponding to the 12 months of the year. The tables 2 and 3 present the values
of these factors for the three hops identified from the annual minimum temperature series.
The table analysis 2 and 3 shows that the monthly correction factors are not distributed
according to a uniform law.Thus, the corrections made to the monthly temperatures differ
from one month to another. This constitutes a strong point of the method of homogeniza-
tion of the temperatures used. In fact, the anthropogenic influence of the measurement
process at the climate station does not have the same impact on the measurement made
during the different periods of the year.

The monthly correction factors were calculated for all the minimum and maximum
monthly temperature series corresponding to the 5 stations selected in this study. We also
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adjusted the correction factors when the value of the mean absolute error is not equal to
Zero.
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Appendix 1

Extracts from station processing
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Figure 3. Normal distribution of maximum and minimum temperature at [a;b] = 0.15°C
from Antsiranana station

( i Acro | | Minimum temperature
Period 1950-2009 1950-2009
Length of Series 619 619
missing values 102 101
Arithmetic average 30.32 21.77
Standard deviation L1t 155
Variance 124 239
Variance Coefficiente 3.67% 7.10%
Coefficient of Skew -0.14 -0.32
Coefficient of Kurtosis -0.36 -0.74
Maximum value 33.50 (1990.92) 25.10 (1953.17)
Minimal value 27 (1984.50) 17 (2007.58)
1st Quartile (25%) 29.50 20.40
Median 30.40 2220
3rd Quartile (75%) 3110 2290
Kolmogorov-Smirnov test D = 0. D = 0.11(p = 0.00, Non)
Linear Regression Model y = 30. y = 22.30 — 0.00 X z
Coefficient of T-test bl T=2. T = —5.44 > —1.96(95%)
Trend / 10 years 0.01(Nom) —0.02 (Non)
Determination Index (Correlation) 0.01(0.11) 0.05(0.21)
Variance (Residual + Estimate = Total) 1.22 +0.02 =1.24 2.27 4+ 0.11 = 2.38
Correlation Coefficient Series r1=0.65 < r1(Tgg5y,) = 0.06 (Non) | rl=0.81 < r1(Tggse,) = 0.06 (Non)
Report by Von Neumann V =0.70 > V(Tggse;) = 1.87 (Non) V =0.37 > V(Tggse;) = 1.87 (Non)
Statistics of Rank Spearman rs = 0.09,t = 2.35 < Tkrit97_5% rs = —0.21,t = —5.46 < Tkrit97_5%
=1.96 (Non) =1.96 (Non)
Statistics of Rang Mann-Kendall t =0.04 < Tkritgge, = 0.05(0.K.) t=—0.16 < Tkritgze, = 0.05 (Non)
Confidence Interval of Arithmetic Mean. | (30.24, 30.41) (21.65, 21.89)

Table 4. Statistical parameters of maximum and minimum temperature of Antsiranana sta-
tiona
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Figure 4. Distribution of QM adjustments of minimum temperatures
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[ Vohemar Acro | Maximum temperature [ Minimum temperature ]
Period 1950-2009 1950-2009
Length of Series 456 456
‘missing values 273 264
Arithmetic average 2878 2174
Standard deviation 164 1.52
Variance 2.69 232
Variance Coefficiente 5.70% 7.01%
Coefficient of Skew -0.22 -0.35
Coefficient of Kurtosis -1.04 -118
Maximum value 32.30 (1987.08,2001) 24.30 (1987.08)
Minimal value 25.10 (1984.50) 18.20 (1953.58)
1st Quartile (25%) 27.40 20.30
Median 29 22.10
3rd Quartile (75%) 30.20 23.05
Kolmogorov-Smirnov test D = 0.08(p = 0.00, Non) D = 0.15(p = 0, Non)
Linear Regression Model y = 28.56 + 0.00 X = y = 21.29 4+ 0.00 X =
Coefficient of T-test bl T = 1.77 < 1.97(95%) T =4.13 < 1.97(95%)
Trend / 10 years 0.01 0.02 (out)
Determination Index (Correlation) 0.01 (0.08) 0.04 (0.19)

‘Variance (Residual + Estimate = Total)
Correlation Coefficient Series

Report by Von Neumann

Statistics of Rank Spearman

Statistics of Rang Mann-Kendall
Confidence Interval of Arithmetic Mean

2.66 + 0.02 = 2.68

rl =0.78 < r1(Tggge;) = 0.08 (Non)
V =0.44 > V(Tgggo) = 1.85 (Non)
rs = 0.06,t = 1.18 < Tkritgy 5o
=1.97(0.K.)

t=0.02 < Tkritggey = 0.06 (0.K.)
(28.62, 28.93)

2.23 4+ 0.08 = 2.32

r1=0.81 < r1(Tgg59;) = 0.07 (Non)
=0.38 > V(Tgggo;) = 1.85 (Non)
rs =0.19,t = 4.22 < Tkritgy o

=1.97 (Non)

t=0.11 < Tkritggey = 0.06 (Non)

(21.60, 21.88)

Table 5. Statistical parameters of maximum and minimum temperature of the Vohemar

station
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Figure 5. The distribution of QM adjustments of maximum temperatures

[ Antalaha Aero | Maximum temperature [ Minimum temperature
Period 1991-2004 1991-2004
Length of Series 107 107
Missing values 61 61
Arithmetic average 28.63 21.10
Standard deviation 213 177
Variance 4.53 3.12
Variance Coefficiente 743% 8.37%
Coefficient of Kurtosis -0.21 -0.15
Cocefficient of Kurtosis -1.35 -1.49
Maximum value 32.10 (1996) 23.70 (2002.08)
Minimal value 24.80 (1992.58) 18.10 (1992.50,1996.50)
1st Quartile (25%) 26.55 19.50
Median 28.90 21.30
3rd Quartile (75%) 30.50 22.80
Kolmogorov-Smirnov test =0.12(p = 0.11, O.K.) D = 0.14(p = 0.03, Non)
Linear Regression Model y = 28.47 4+ 0.00 X x y = 20.76 + 0.00 X z
Coefficient of T-test bl T = 0.59 < 1.98(95%) T = 1.43 < 1.98(95%)
Trend / 10 years 0.02 0.05
Determination Index (Correlation) 0.00(0.06) 0.02(0.14)
Variance (Residual + Estimate = Total) 4.47 + 0.01 = 4.49 3.03 4+ 0.06 = 3.09
Correlation Coefficient Series r1 0.82 < rl(Tg95%) 0.15 (Non) rl =0.76 < rl(ngs%) = 0.15(Non)
Report by Von Neumann V =10.36 > V(Tggge) = 1.70 (Non) V =0.48 > V(Tggg9,) = 1.70 (Non)
Statistics of Rank Spearman rs = 0.07,t = 0.70 < Tlcmt9745% rs = 0.13,t = 1.36 < Tkrit97_5%

Statistics of Rang Mann-Kendall
Confidence Interval of Arithmetic Mean,

=1.98(0.K.)
t =0.03 < Tkritggey = 0.13 (0.K.)
(28.23, 29.04)

=1.98(0.K.)
t =0.07 < Tkritggey, = 0.13 (0.K.)
(20.76, 21.43)

Table 6. Statistical parameters of maximum and minimum temperature of Antalaha station
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[ Nosy Be Aero | | Minimum temperature
Period 1950-2009 1950-2009
Length of Series 628 628
missing values 92 92
Arithmetic average 3116 2115
Standard deviation 112 1.92
Variance 124 3.69
Variance Coefficiente 3.58% 9.08%
Coefficient of Skew -0.23 -0.48
Coefficient of Kurtosis -0.45 -1.05
Maximum value 34.20 (2006.83) 24.60 (2008.08)
Minimal value 28.30 (1952.50,1956.50,1974.50) 16.70 (1968.50)
1st Quartile (25%) 3040 19.40
Median 31.20 21.80
3rd Quartile (75%) 32 22.80
Kolmogorov-Smirnov test D = 0.06(p = 0.02, Non) D =0.15(p = 0, Non)
Linear Regression Model y = 30.26 + 0.00 X = y = 20.95 4+ 0.00 X z
Coefficient of T-test bl T = 14.03 < 1.96(95%) T = 1.60 < 1.96(95%)
‘Trend / 10 years 0.03 (Non) 0.01
Determination Index (Correlation) 0.24(0.49) 0.00(0.06
Variance (Residual + Estimate = Total) 0.95 + 0.30 = 1.24 3.67 4+ 0.02 = 3.68
Correlation Coefficient Series r1=0.66 < r1(Tgg5e,) = 0.06 (Non) | r1 =0.81 < r1(Tgg5e;) = 0.06 (Non)
Report by Von Neumann V =0.68 > V(Tggge;) = 1.87 (Non) V =0.38 > V(Tgggo) = 1.87 (Non)
Statistics of Rank Spearman rs = 0.49,t = 14.02 < Tkritgy 5o rs = 0.0

Statistics of Rang Mann-Kendall
Confidence Interval of Arithmetic Mean.

=1.96 (Non)
t=0.31 < Tkritgge, = 0.05 (Non)
(31.07, 31.25)

8,t = 1.88 < Thritgy 5o,
=1.96 (0.K.)

t =0.03 < Tkritggey = 0.05(0.K.)
(21.00, 21.30)

Table 7. Statistical parameters of maximum and minimum temperature of Nossy Be station

[_Sambava Aero [ Maximum temperature [ Minimum temperature
Period 1950-2009 1950-2009
Length of Series 566 566
missing values 154 159
Arithmetic average 2875 20,51
Standard deviation 175 1.89
Variance 3.07 3.56
Variance Coefficiente 6.09% 9.19%
Coefficient of Skew -0.05 -0.09
Coefficient of Kurtosis -1.28 -1.29
Maximum value 32.30 (2007.08) 24.10 (1992)
Minimal value 24.80 (1984.50) 16.60 ( 1956.50,1959.67)
1st Quartile (25%) 27.10 18.77
Median 28.90 20.70
3rd Quartile (75%) 3030 2220
Kolmogorov-Smimnov test D = 0.10(p = 0.00, Non) D = 0.10(p = 0.00, Non)
Linear Regression Model y = 28.76 — 0.00 X = y =19.94 4+ 0.00 X =
Coefficient of T-test bl T =-0.11 > —1.96(95%) T = 4.44 < 1.96(95%)(0.K)
Trend / 10 years —0.00 0.02 (Non)
Determination Index (Correlation) 0.00(0.00) 0.03(0.18)
Variance (Residual + Estimate = Total) 3.06 4+ 0.00 = 3.06 3.43 + 0.12 = 3.55
Correlation Coefficient Series r1=0.80 < r1(Tggge;) = 0.07(Non) | 71 =0.83 < r1(Tgg59) = 0.07 (Non)
Report by Von Neumann V =0.39 > V(Tggsp,) = 1.87 (Non) V =0.34 > V(Tgg50,) = 1.86 (Non)
Statistics of Rank Spearman rs = —0.02,t = —0.48 < Tkritgy sy | 7s = 0.22,t = 5.32 < Tkritgy 5o,

Statistics of Rang Mann-Kendall
Confidence Interval of Arithmetic Mean.

=1.96 (0.K.)
t = —0.03 < Tkritgge, = 0.06 (0.K.)
(28.60, 28.89)

=1.96 (Non)
t =0.14 < Tkritgge, = 0.06 (Non)
(20.36, 20.67)

Table 8. Statistical parameters of maximum and minimum temperature of Sambava station




