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ABSTRACT. we present a mathematical and numerical study of the three-dimensional time-harmonic
Maxwell equations solved by a discontinuous Galerkin method coupled with an integral representa-
tion. This study was completed by some numerical tests to justify the effectiveness of the proposed
approach.

RESUME. nous présentons une étude mathématique et numérique pour la résolution des équations
de Maxwell tridimensionnelles en régime-harmonique, par une méthode de type Galerkin discontinu
couplée a une représentation intégrale. Cette étude a été complétée par des tests numériques pour
justifier I'efficacité de I'approche proposée.
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1. Introduction

The propagation of electromagnetic waves is a physical phenomenon that describes the
analysis of an emitted wave, this phenomenon is described by mathematical equations.
In this work, the electromagnetic wave propagation equation will result in Maxwell’s
equations.

What’s interesting for Maxwell’s equations is that the domain of validity extends to a

wide variety of waves: radar, TV, radio, ... and even in radiation fields as varied: Ultra-
violet, X-rays, infra-red, gamma, etc.
Various methods have been developed for numerical resolution of Maxwell’s equations,
however, it seems that no method is predominant if we take into account the BF-MF-HF
domains we are interested in BF-MF domains. Our work in this paper is devoted to the
resolution of three-dimensional time-harmonic Maxwell’s equations by the discontinuous
galerkin method coupled to an integral representation.

2. Maxwell’s problem

We are interested in this paper to the solutions of the time-harmonic Maxwell’s equa-
tions in the presence of an obstacle D, which are particular solutions and which shall
check the following system:

Vx E+iwpH = J, in R"\D, O
Vx H—iweE = 0, in R\D,

where E and H are respectively the electric and magnetic fields. The parameters € is
the relative dielectric permittivity, u is the relative magnetic permeability and w is the

pulsation.
So the perfect conductor condition will be considered on boundary I',,, define here:
Exn = 0,
H.n = 0

This problem is posed on an initially infinite domain; the idea here is to limit our domain
by a fictitious boundary we will note it T',.

-
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Figure 1. Diffraction of an electromagnetic wave in the presence of an obstacle D where
its boundary is noted I,

97



98 CARI 2018, 14th-16th October 2018, Stellenbosch, South Africa

We consider on this boundary an exact condition in the form of an integral represen-
tation defined by:

nxE +nx(nxH) =nx RE) +nx(nx RH)) ,

where R(E) and R(H) are respectively the values of E and H on I', expressed as a
function of F and H in I';,, defined using the integral representation by the Stratton-Schu
formulas [3, 4] given by:

RE)=Lg - Kf and RH)=Lf + Kg,

where f = n x E, g = —n x H and for the fundamental solution of the Helmholtz
problem (the Green function G):

(gu)(a:)z/G(x,y)u(y)dy, Lu= %Vxngu and Ku =VxGu
r

For simplicity we assume that J = 0. At this phase, we then come back to a problem:

Find E,H € H(Vx,) , suchas:

iweE -V xH = 0 in Q

iwp H+V X E =0 in Q 2)
nx E = —nx Einc on |
nXE—-nxnxH) = nxRE)—-nxnxRH)) on T,

where H(Vx,Q) = {ve L?(Q)®: V x v € L2(Q)3} and:

. Einc El Hl ny
Einc — Eénc , E = E2 s H = Hz et n= |ng
Eénc Es H; ns

In the vector field W such that W = [}EI] , the problem (2) will be written in this
matricial form:

iWQW + Go0,W + G,0,W +G,0,W =0 on Q
(Mr,, — Gp) (W + Wne) =0 in T, 3)
(Mp, — Gyp) (W — R(W)) =0 in T,.

_ elz 033
WhereQ_[ 03x3 MIS]

and (W) = [m(E)] such that: (m(W))(x) = / K(z,4)W (y)do, where
R(H) T,

K :R® x R® — M;(C) is a Green kernel.

In fact, denoting by (e, ey, e,) the canonical basis of R3, the matrices G, for k €

{z,y, 2} are defined by:

03 5 N V1 0 Vs —7Vg
G = A ¢ | wherefor! € {1,2,3}avectorv = [va|,N, = |—vs O vy
Ne’“ O3xs V3 Vg -1 0

Furthermore, G, = G5 n1 + Gy na + G, ns.
G and G, denote the positive and negative parts of G,,!. We also define |G,,| =

1. If PAP—1 is the natural factorization of Gy, then G = PA£ P~ where A™ (resp. A~) includes
only positive eigenvalues (resp. negative).
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G} — G;,. The matrices Mr, et Mr_, are then defined by:

| O3x3 N, _
My, = [ Nt Osxs and Mr, = |G,|

3. Variational formulation of the problem and discretization

We decompose the domain €2 in tetrahedral elements, we denote by 75 the set of
elements K;.
For all K; € 73,, we define the functional space

Vi ={W € [L*(Q)]°; W, =W, € P,(K)}

By a development similar to that adopted by Ern and Guermond [1, 2] and adding the
terms of the integral representation, the variational formulation of the problem (3) con-
sists of:

V V eV, xV,, K; an element of 75, obtained:

Find W, = (E;, H;) € Vi, X V4, such as:

/ Wi S GV
K;

le{z,y,z}
+ / [(IFKiSF HWZ]])t % + (IFKiGnF {WZ})t W do
Fer?

/ (iwQW;)" Vdz
K;

+

1 —
| G Mr, + e G W V0
Fere

1 —
- (§(MF,Ki —IFKiGnF)m(WZ‘))tVBO'
Ferlg

1 —
(§(MF,Ki + IFKiGnF)W,-)tVGG

+

Ferm
1 o
= (5(Mpk, — Irk,Gn, )W)V
Ferp 2

where: I? = | ] KinK;,T"= ) KinTp and T¢ = | J K;NT..

K;em, K;€th K;eTp
Ir g represents the incidence matrix between facing surfaces and elements whose entries
are given by:

1 if F' € K and orientations of ny and ny are match,
Ipg =4 -1 if F' € K and orientations of ny and nx do not match,
0 if the face F' does not belong to the element K.

where: np is the unitary normal associated to the oriented face F' and nx is the unitary
normal associated to the cell K.

We also define respectively the jump and average of a vector V to Vj, X V}, on the face F
shared between two elements K and K

1
VI = Irx Vie + Ipg iy and  {V}=3 (Vi + Viy)

The matrices Sr and My g are defined following the choice of numerical fluxes:
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3.1. Centered flux
03x3  Npg
, Irg
In this case, Sp =0 and Mp g = —N}_ 0O3x3
|G| if F el

] if FFel™

3.2. Upwind flux

E t
O‘FNnFNnF 03><3

In this case, Sp = [ Osns OlngLFNnF

] and
NENpe Nt IpgNp,

Mpx =4 | —Irx N}, O3x3
IGnp|  if F €T,

] if F el™,

; —gE—gH =1
for a homogeneous medium, nr = oz = ap =5

4. Linear system of the problem

We will treat the variational formulation term by term we can reduce our formulation
in vectorial form

[ 08 D B0 46y -] Wi 2,

JEV;
+5Fia Z Cij Wj = 5Fim Bfnc
5K ;T #£0
: ® Gl] ,

MFK + IFKz np)] ]
D’ = [gp ® [Irk,(Sr Irk, + an)]]
E;; = Z [y./ij ® [IFK,-(SF Irk; + iG"F)]] ’

]ie‘/i
Cij = 3 [WF? ®I6] K;; [lpr;." ®Ie] ,
Bin© = Z;Winc = [WF;" ® [3(Mrk, — IFKian)]] wine,
F;j=K,nK, ,F"=K,NT,, F =K;NT,,

V; : the set of indices of neighboring elements of K; ,

1 if T,NK;=F¢ 1 if T,NK,=F"
Opa = ] and dpm = :
0 if T,NK, =2 0 if T,NK,=0

we can reduce our problem as a linear system:

(A-C)X =B
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— A is the square matrix of size:
N =6 x Number of degrees of freedom x Number of cells
. dz _]\V:_/
this matrix is a sparse matrix defined by block size (6 d; x 6 d;) such as:
-Fori=1,...,N_.

A(i,i) = D} — D? + DI’ x §ij + DI % 6pm + DF" x 8
-Fori,j=1,...,N.:
A(jg, 1) = Eij X by

with:

5 — 0 if KiNnK; =9
Y1 else

— C'is a square matrix of the same size as A, defined by block size 6 d; x 6 d; such
as:
-Fori,j=1,...,N.:

C(’L,_]) = —Cij X (51":1 X (Sl";n

where:

S — 0 if K,NT'y =02
= 1 else

— X is the vector of size N, Where its components are the unknowns of our problem.
— Bis the vector of size N such as: B(i) = B{"™* x §pm

5. Numerical results

Following the mathematical study of the resolution of the Maxwell equations in un-
bounded domain by a method of type coupled with an integral representation (DG+IR),
we present a sample of the numerical results.

We will give some numerical results by making the comparison between the approximate
solution and the exact solution.

| Mesh [ #1 | #M2 |  #M3 |
Distance between I',,, and I, 0.2 0.4 0.6
Amaz 0.1 0.1 0.1
Number of elements 204222 476454 830879
Relative error (DG) 0.467 x10~1 | 0.288 x10~T | 0.286 x10~!
Relative error (DG+IR) 0.843 x10~2 | 0.883 x10~2 | 0.909 x10—2

Table 1. Variation of external radius, k=5
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Figure 2. Meshing of the volume between a first sphere of radius R = 1 and a second
sphere of radius R = 1.06. A mesh size h = 0.07.

5.1. Performance of methods with centered flux & upwind flux

Erreur relative

The comparison results between the two methods DG+IR and DG are illustrated in the
form of the relative error between the exact solution and the approximate solution either
using a centered flux (see also figure (3)) or an upwind flux (see also figure (4)).
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Figure 3. Electric Field Error according
to degree of freedom: Centered flux
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Figure 4. Electric Field Error according
to degree of freedom: Upwind flux

A good improvement of the convergence is observed by using the DG method coupled
to an integral representation using either a centered flux or an upwind flux.

5.2. Error depending on the size of the domain of study

We are interested in the case where the discretization step h and the waves number
k = 10 are fixed and by varying the distance delimited between the boundary of the

20h.

obstacle I',,, and the artificial boundary I, by keeping a choice of wavelength equal to
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Figure 5. Error according the size of the domain R.
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Figure 6. Electric Field Error by the DG
method.

Figure 7. Electric Field Error by the
DG+IR method.

It is clear that the results obtained by the DG+IR method are better, which shows
that the coupling method is the most efficient. They show an show an improvement in
accuracy, especially when the fictitious border is close to the boundary of the obstacle.
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