
Charging Stations placement in Drone Path 

planning for large space surveillance 

Jean Louis Fendji Kedieng Ebongue*, Israel Bayaola*, Christopher 

Thron**, and Anna Förster*** 

* University of Ngaoundéré – CAMEROON, lfendji@univ-ndere.cm, ibayaola@univ-ndere.cm

** Texas A&M University Central Texas – USA, thron@ct.tamus.edu 

*** University of Bremen – Germany, afoerster@comnets.uni-bremen.de 

RÉSUMÉ. Les stations de charge ont récemment été introduites pour assister les drones dans les 

missions de surveillance de longue durée, par exemple dans les grandes exploitations agricoles. Mais 

le coût de ces équipements supplémentaires reste un obstacle important à leur adoption. Il est donc 

impératif d'en minimiser leur nombre lors de la planification de la trajectoire du drone. A cette fin, ce 

travail formule le problème du drone unique avec plusieurs stations de charge (SD-MCS). Dans cette 

formulation, une zone d'intérêt à couvrir est donnée ainsi qu'un ensemble d'emplacements potentiels 

de stations de charge où le drone peut atterrir pour recharger sa batterie. L'objectif est de minimiser 

le nombre de stations de charge effectivement utilisées et ensuite le temps d'exécution de la mission. 

Trois approches sont proposées pour résoudre le problème. Un ensemble de 30 topologies aléatoires 

a été généré pour évaluer les différents algorithmes. Après simulations, le Back and Forth Simulated 

Annealing donne des résultats satisfaisants avec un nombre optimal de stations de charge.  

ABSTRACT. Charging stations have recently been introduced to assist drones in long missions’ 

surveillance, such as in large farms. However, the cost of such extra equipment remains a significant 

barrier to their adoption. It is therefore imperative to minimize the number of charging stations during 

the path planning of the drone. To this end, this work formulates the Single Drone with Multiple 

Charging Stations problem (SD-MCS). In this formulation, an area of interest to be covered is given 

as well as a set of potential charging station locations where the drone can land to recharge its battery. 

The aim is primarily to minimize the number of locations for charging stations, and secondarily to 

minimize the completion time of the surveillance mission. Three approaches are proposed to solve 

the problem. A set of 30 random topologies has been generated to test the different algorithms. From 

computational experiments, Back and Forth Simulated Annealing provides satisfactory results with 

an optimal number of charging stations.  

MOTS-CLÉS : Planification de la trajectoire du drone, stations de charge, aller-retour, recuit simulé. 
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1. Introduction  

Although at one time drones were used only by the military sector, they are now  used in 

several civilian applications areas such as smart farming[1], disaster management[2], and 

surveillance[3]. Earlier drones were manually and remotely operated by humans, but now 

flights can be pre-programmed and the drone’s mission executed automatically. In this 

last mode, the path of the drone should be determined before the mission: the task of prior 

path determination is known as Coverage Path Planning[4].  

Coverage Path Planning can be defined as follows: Given an area of interest, determine 

an optimal path of the drone allowing it to complete its mission of covering the area of 

interest. The objective is usually to reduce the completion time of the mission. The area 

of interest can be decomposed or not, depending on its regularity or its complexity. In 

most cases, it is decomposed into cells based on the Ground Sampling Distance (GSD), 

which is defined as the distance between pixel centers measured on the ground [5].  

An important issue when planning the path of a drone is the energy limitation due to the 

small capacity of the battery. Huge amount of works tackling CPP proposed energy-aware 

algorithms based on some observations, mainly the fact that a drone spends a lot of time 

and energy making turns. Therefore, those algorithms modify conventional trajectories 

such as Back-and-Forth [6] and HILBERT[7]. However, the limited capacity of drones 

prevents them to perform large space missions. An interesting survey on coverage path 

planning with drone can be found in [8].  

To assist drones for large-area missions, charging stations have recently been introduced 

[9]. When a drone runs out of energy, it lands on a charging station to recharge its battery. 

Scenarios in [10] use pre-defined charging station locations with only one drone. The aim 

is to minimize the mission completion time by deciding when the drone should stop for 

charging depending on the state of charge (SoC). Authors in [11] rather consider a fleet 

of drones and tackle the problem of coverage and energy replenishment scheduling with 

only one charging station at the center of the scenario. This limits the area to a radius of 

half the traveling distance of a drone (round trip).  

To automatically surveil larger areas will require a greater number of drones. How to 

minimize their number and determine their optimal locations? In fact, a greater number 

of charging stations drastically increase the cost of the architecture for automatic 

surveillance. For instance, the charging pad from Heisha costs around USD 1000 while a 

Mavic Air drone that can be charged using this pad costs around USD 600 [12]. It is 

Proceedings of CARI 2020



 

 

therefore important to minimize the number of charging station in order to reduce the cost 

of the architecture, especially in presence of limited budget as it is the case for low-

income users. 

This work introduces the Single Drone and Multiple Charging Station (SD-MCS) 

problem. Unlike previous work focusing on the minimization of the completion time of 

the mission, this work rather tackles drone path planning with a priority on the economical 

point of view. In this formulation, an area of interest to cover is given as well as a set of 

potential locations for charging stations where the drone can land to recharge its battery. 

The aim is first to minimize the number of effectively used charging stations and then the 

completion time of the surveillance mission. To reach this goal, three approaches have 

been defined: the well-known Back and Forth (BF), Simulated Annealing (SA), and the 

combination of the two previous approaches namely Back and Forth Simulated Annealing 

(BFSA). The latter is based on the assumption that the quality of the initial solution of 

SA can influence the final solution. Thus, SA is combined with BF. BF generates the 

initial solution that is later improved by SA. To test the proposed approach, a set of 30 

random topologies has been generated. 

The rest of the paper is organized as follows: Section 2 presents the system model and 

the formulation of the Single Drone and Multiple Charging Station problem. Section 3 

presents the different optimization approaches defined to solve the problem. Section 4 

presents the simulation setup and compares the results. This paper ends with a conclusion 

and future work. 

2. System Model 

2.1. Scenario modelling  

The area to cover is considered as a rectangular area of size 𝐷 m². It is decomposed 

into cells as shown in Figure 1. Each cell has a unique integer identifier. The set of the 

cells of area is represented by 𝐴 and contains 𝑛 × 𝑚 elements. Some cells are candidate 

locations for charging station deployment where drone can stop to recharge its battery. 

Their set is represented by 𝐶, with 𝐶 ⊆ 𝐴. There is only one drone with a maximal 

capacity energy 𝐸𝑀. When the drone stops at charging station, it recharges its battery to 

𝐸𝑀 before leaving. The drone starts its mission at the take-off point 𝑆𝑡 and ends it at the 

landing point. 

The following assumptions have been made: the drone starts with the maximum 

energy, but this energy cannot allow it to cover the whole area; the area to be covered has 
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no obstacles; the wind speed is constant over the whole area; the drone flies at a constant 

height; and finally the ambient temperature, the taking off energy and landing energy are 

neglected. 

 

 

2.2. Energy model  

The power consumed during horizontal flight and cover has been considered 

approximately equivalent [13]. But it is not the case in the reality. For a better 

approximation, we use the energy model proposed by [10]. This model is based on 

empirical experiments with an estimation error around 0.4%. The power and energy are 

estimated respectively by (1) and (2). 

𝑃̂ = [

𝛽1

𝛽2

𝛽3

]

𝑇

[

‖𝑣𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ‖

‖𝑎𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗  ‖

‖𝑣𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ‖‖𝑎𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗  ‖

] + [

𝛽4

𝛽5

𝛽6

]

𝑇

[

‖𝑣𝑧⃗⃗  ⃗‖

‖𝑎𝑧⃗⃗⃗⃗ ‖

‖𝑣𝑧⃗⃗  ⃗‖‖𝑎𝑧⃗⃗⃗⃗ ‖

] + [

𝛽7

𝛽8

𝛽9

]

𝑇

[

𝑚
𝑣𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ . 𝑤𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗  ⃗

1
]  (1) 

𝐸 = 𝑃̂𝐷 (2) 

Where: 

Figure 1: Problem description (a) and area decomposition (b) 
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▪ 𝑣𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗  and 𝑎𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗    indicate the speed and acceleration vectors describing the horizontal 

movement of the drone in m/s; 

▪ 𝑣𝑧⃗⃗  ⃗ and 𝑎𝑧⃗⃗⃗⃗  the speed and acceleration vectors describing the vertical movement of the 

drone in m/s2; 

▪ 𝑚 the weight of payload in Kg; 

▪ 𝑤𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗  ⃗ the vector of wind movement in the horizontal surface; 

▪ 𝛽1, … , 𝛽9 are coefficients determined empirically; 

▪ 𝐷 is the duration. 

2.3. Single Drone and Multiple Charging Station problem 

formulation 

Formally, the SD-MCS is defined as follows: given an area to cover decomposed into 

a set of cells 𝐴 and a set of potential locations for charging station 𝐶, determine a route 𝑅 

that will minimize the number of effectively used charging stations and the energy 

consumption of the mission. A route 𝑅 is nothing else than a permutation of the elements 

of 𝐴. More specifically, 𝑅 = (𝑅1, 𝑅2, … , 𝑅𝑛×𝑚) with 𝑅𝑖 ∈ 𝐴, 1 ≤ 𝑖 ≤ 𝑛 × 𝑚. 

The objective functions are given by (3) and (5). They respectively minimize the 

number of charging station and the energy consumption. 

𝑀𝑖𝑛 𝑓1(𝑅) = ∑ℎ(𝑅𝑖)

𝑛

𝑖=1

 (3) 

𝑀𝑖𝑛 𝑓2(𝑅) = ∑𝑃(𝑅𝑖, 𝑅𝑖+1)

𝑛

𝑖=1

𝑡𝑅𝑖,𝑅𝑖+1
 (4) 

Where: 

ℎ(𝑅𝑖) = {
1, 𝑅𝑖 ∈ 𝐶
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

▪ 𝑛 =  𝐶𝑎𝑟𝑑(𝑅);  

▪ 𝑅𝑖 ∈ 𝑅;  

▪ 𝑃(𝑅𝑖 , 𝑅𝑖+1) is the power consumed by the drone between 𝑅𝑖 and 𝑅𝑖+1 given by eq. 

(1); 

▪ 𝑡𝑅𝑖,𝑅𝑖+1
 is the time took by the drone to go from point 𝑅𝑖 to point 𝑅𝑖+1. 
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3. Optimization approaches 

3.1. Back and Forth 

Back and Forth is the basic technique used especially in regular surfaces. It is inspired 

by what is called in the literature "the way of the ox", the approach is the following: when 

an ox trailed a plow and must cover an area, it travels along the field in a straight line, 

turns around, then makes a new rectilinear path adjacent to the previous one. The 

approach is given by Algorithm1.  

Algorithm 1: Back and Forth (BF) 

Input: 𝑓1, 𝑓2: Objective functions to minimize 

Output: 𝑅: A route 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Begin 

   k:=0, R:=[ ] 

   for j from 0 to n: 

  for i from 0 to m: 

       if j mod 2 = 0: 

             p ≔i × n + j + 1 

        else: 

              p ≔ (m-i-1) ×n + j + 1 

         R[k] ≔p 

         k ≔k + 1 

    return R 

End 

3.2. Simulated Annealing 

The SA algorithm is inspired from the annealing process in metallurgy. It proceeds as 

follows: an initial solution is generated, then several iterations are performed to improve 

this solution. A neighbour solution is generated from the previous one at each iteration. 

The new solution is accepted if it improves the value of the objective function. If it is not 

the case, the new solution is accepted with a probability depending on the current 

temperature 𝑇 and the difference between the value of its objective function and the one 

of the previous solution ∆𝐸. The probability in the SA algorithm generally follows the 

Boltzmann distribution given by 𝑒−
∆𝐸

𝑇 . Since the temperature updates each time the 

equilibrium state is reached, the probability of accepting non-improving solutions 

decreases. The algorithm stops when a minimal temperature is reached. A particularised 

version of SA is given in Algorithm 2.  
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Algorithm 2: Simulated Annealing (SA) 

Input: 𝑓1 : first objective function (number of charging station) 

            𝑓2 : second objective function (energy consumption)   

Output: 𝑅: the best route found 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Begin 

𝑇 ∶= 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙   

𝑅:= initialSolution()  

𝑣1:= 𝑓1(𝑅); 𝑣2:= 𝑓2(𝑅) 

while (stopping condition not met) do 

while (equilibrium condition not met) do 

𝑅’ := newSolution()  

𝑣1’ := 𝑓1(𝑅’); 𝑣2’ := 𝑓2(𝑅’); 

∆𝐸1 ∶= 𝑣’1 − 𝑣1 

∆𝐸2 ∶= 𝑣’2 − 𝑣2 

if ∆𝐸1 < 0 or ( ∆𝐸1 = 0 and ∆𝐸2  < 0 ) then 𝑅 ∶= 𝑅’ 

else accept R’ if ∆𝐸1 = 0 with probability 𝑒−
∆𝐸2 

𝑇  

 Update(𝑇) 

return 𝑅 

End 

 

InitialSolution (line 3): The initial route is obtained by generating a permutation of 

the cells, starting by the defined take-off point and ending by the defined landing point. 

Each cell has between 3 to 8 Moore neighbours. Each time a cell is included in the route, 

the next cell is chosen in the Moore neighbourhood of the previous cell. If it is not 

possible, then a random cell is generated.  

Fitness functions (lines 4): the two objective functions namely 𝑓1 and 𝑓2 are evaluated 

using respectively eq. (3) and (4).  

NewSolution (line 7): It is obtained from the current solution using a k-opt operator. 

A k-opt operator permutes k edges. A 4-opt operator is used with greater temperatures 

while a 2-opt is used when the temperature is close to the threshold. An illustration of the 

2-opt operator application on a given route is given in Figure 2. 

Stopping condition (line 5): If the current temperature is lower than a certain 

threshold, or the we suppose therefore having reached the optimal. 

Equilibrium stage (line 6): If there is no improvement of the best solution found so 

far after a certain number of iteration, we suppose having reached an equilibrium state 

and we update the temperature. 
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Accepting a solution (line 11 and 12): A solution is accepted if it provides a smaller 

number of charging station, or if the number of charging station is the equal to the one of 

the best solution found so far, but with a smaller energy consumption. However, a non-

improving solution with regard to energy consumption can be accepted in order to escape 

from local optima, but with a certain probability. 

Figure 2: Application of 2-opt operator. (a) initial route: (b) neighbor route by permuting 

edges (2,3) and (5,6). 

3.3. Back and Forth Simulated Annealing (BFSA) 

BFSA is a combination of BF and SA. It is based on the idea that the initial solution 

of SA can improve its result. So, the initial solution is generated by BF and it is improved 

using SA. 

4. Performance evaluation 

4.1. Parameters setting 

We use the parameters of the drone 3DR Solo. It has a maximum energy of 76.96𝑊ℎ. 

We considered that the drone flies at a speed of 0.5𝑚/𝑠 and at an altitude of about 120𝑚. 

𝛽 parameters used the power in eq. (1) for 3DR solo drone are the following [10]: 𝛽1 =
−1.526, 𝛽2 = 3.934, 𝛽3 = 0.968, 𝛽4 = 18.125, 𝛽5 = 96.613, 𝛽6 = −1.085, 𝛽7 =
0.220, 𝛽8 = 1.332, 𝛽9 =  433.9. The wind speed is set to 3.88m/s. 

We generated a set of 30 random topologies of size 4 × 4 𝑐𝑒𝑙𝑙𝑠 (i.e 𝑛 = 𝑚 = 4), with 

4 potential charging locations. We performed 30 executions of each approach on each of 

these instances. Approaches have been compared with regards to three metrics namely: 

the feasibility, the number of charging station, and the energy consumption. A solution is 

a feasible if the maximum energy of the drone allows it to fly from the starting point or 

an intermediary charging station to the closest charging station on the route, or from the 

last charging station to the final landing point. All the algorithms have been implemented 

in Python. 
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4.2. Simulation results and discussion 

Table 1 summarizes the results of the simulation.  The data are the mean values of all 

the 30 runs for each instance. The best results are in bold. From the results, BFSA 

provides the best feasibility with a total average of 99.55% compared to 87.22% for SA 

and only 33.33% for BF. More specifically, BFSA provides a 100% feasibility on 27 out 

30 instances. The distribution of potential location for charging stations does not allow 

BF solution to be feasible on 20 out 30 instances.  

Regarding the number of charging station, BFSA again provides the best result with 

a total average of 3.02 charging stations, compared to 3.1 for BF and 3.14 for SA. 

Explicitly, BFSA provides the minimum number of charging station for all instances 

excerpt instance 2 where BFSA provides 3.43 compared to 3.37 for SA. But when 

observing the feasibility metric for that instance, we realize that SA provides 66.67% 

compared to 93.33% for BFSA. That means, SA provides only 10 feasible solutions out 

of 30 runs when BFSA provides 28. This shows that BFSA find a feasible solution even 

at the expense of the number of charging station, where SA ends without finding a feasible 

solution. The average in terms of number of charging station of BFSA can therefore be 

greater than the one SA for instance 2. 

 

 

Figure 3: Mean Energy consumption 

The last metric is the energy consumption. Wherever BF finds a feasible solution, the 

energy consumption is the smallest. But as discussed earlier, BF found only 10 feasible 

solutions out of 30 instances. Wherever BF finds a feasible solution, BFSA provides the 

same energy consumption except for instance 28 where BFSA provides 251,92Wh 
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compared to 234,05Wh for BF. But a look to the number of charging station shows that 

BFSA requires only 3 charging stations compared to 4 for BF. Since the priority is to 

reduce the number of charging station, BFSA’ solution is considered as the best. In fact, 

if we considered the maximum energy of a 3DR Solo drone that is 76.96Wh, we will need 

at least 4 recharges to provides the required 234,05Wh. Since the drone starts with a full 

charge, only 3 intermediary charging stations are necessary.  

To better observe the energy consumption of the different approaches, we plotted their 

mean values in Figure 3. From Figure 3, BFSA provides a smaller energy consumption 

compared to SA.  

With regards on all the three metrics the difference between BFSA and SA 

demonstrate the impact of the initial solution on SA. 

Table 1: Simulation results summarization (mean values) 

 Feasibility Number of Charging Station Energy 

 BF SA BFSA BF SA BFSA BF SA BFSA 

Inst1 0 96,67 100 _ 3,03 3 _ 265,48 253,40 

Inst2 0 66,67 93,33 _ 3,37 3,43 _ 300,76 288,87 

Inst3 0 80 96,67 _ 3,27 3,07 _ 292,15 273,55 

Inst4 0 100 100 _ 3 3 _ 264,37 256,76 

Inst5 100 96,67 100 3 3,07 3 234,05 274,56 234,05 

Inst6 0 80 100 _ 3,20 3 _ 282,34 253,51 

Inst7 0 100 100 _ 3 3 _ 278,41 256,88 

Inst8 0 86,67 100 _ 3,13 3,03 _ 273,89 259,54 

Inst9 100 86,67 100 3 3,17 3 234,05 283,19 234,05 

Inst10 0 93,33 100 _ 3,13 3,03 _ 279,21 284,08 

Inst11 100 93,33 100 3 3,07 3 234,05 261,92 234,05 

Inst12 100 93,33 100 3 3,07 3 234,05 267,67 234,05 

Inst13 0 93,33 100 _ 3,07 3 _ 284,84 264,13 

Inst14 0 83,33 100 _ 3,20 3 _ 287,25 261,10 

Inst15 0 86,67 96,67 _ 3,13 3,03 _ 287,38 277,86 

Inst16 100 90 100 3 3,10 3 234,05 276,76 234,05 

Inst17 0 63,33 100 _ 3,40 3,03 _ 303,81 278,47 

Inst18 100 100 100 3 3 3 234,05 267,99 234,05 

Inst19 0 63,33 100 _ 3,37 3 _ 298,77 260,16 

Inst20 0 80 100 _ 3,20 3 _ 285,00 256,18 
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Inst21 0 100 100 _ 3 3 _ 275,00 253,92 

Inst22 0 90 100 _ 3,10 3 _ 281,34 259,92 

Inst23 100 93,33 100 3 3,07 3 234,05 271,52 234,05 

Inst24 0 73,33 100 _ 3,27 3 _ 292,62 256,79 

Inst25 100 83,33 100 3 3,17 3,03 234,05 283,19 234,05 

Inst26 0 93,33 100 _ 3,10 3 _ 282,67 262,11 

Inst27 100 83,33 100 3 3,20 3,03 234,05 276,29 234,05 

Inst28 100 93,33 100 4 3,13 3 234,05 278,45 251,92 

Inst29 0 96,67 100 _ 3,03 3 _ 264,37 260,40 

Inst30 0 76,67 100 _ 3,23 3 _ 285,82 257,02 

Total Average 33,33 87,22 99,55 3,1 3,14 3,02 234,05 280,23 254,43 

 

6. Conclusion and future work 

This paper has introduced the Single Drone with Multiple Charging Stations problem 

in which the objectives are the minimization of the number of charging station and the 

energy consumption of the drone. Three approaches have been proposed namely BF, SA 

and BFSA. Simulation results have shown the superiority of BFSA over the two others. 

In fact, BFSA almost always finds a feasible solution even when the others could not. In 

addition, BFSA provides the least expensive architecture due to the minimum number of 

charging station close to the optimal solution. Finally, BFSA provides in general the best 

energy-efficient solution.   

Further investigation will be conducted to consider more realistic parameters such as 

wind speed and direction changing, obstacles and No-Fly Zone (NFZ). Moreover, a web 

interface will be designed to allow user to interact with the system directly on maps and 

to generate waypoints that can be imported into the drone. 
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