Recovery of parameters of the coupled heart-torso model in cardiac electrophysiology *

ABIR AMRI

Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia lamsin@enit.utm.tn

Abstract. In this paper, using the art model in cardiac electrophysiology, the monodomain model, which describes the electrical activity in cardiac tissue, we prove a stability estimates of parameters identification problem. For this purpose, we first establish a Carleman estimate for the coupled heart-torso system. By means of this estimation and following the Bukhgeim-klibaniv method we prove our main result which is a Lipschitz stability estimate of conductivities parameters.

Keywords: Lipschitz stability estimate · cardiac electrophysiology · Carleman estimate · conductivities parameters.

1 Introduction

We assume that the intra- and extracellular conductivities σ_i and σ_e are proportional. Let the bulk conductivity tensor of the medium and the transmembrane conductivity tensor defined respectively as follows

$$\sigma_h = \sigma_i + \sigma_e, \quad (1.1)$$

and

$$\sigma_m = \sigma_i \sigma_h^{-1} \sigma_e. \quad (1.2)$$

We assume that the cardiac domain Ω_h is an open bounded subset with locally Lipschitz continuous boundary of \mathbb{R}^3 and the torso domain is occupied by Ω_t. We denote by S the interface between both domains Ω_h and Ω_t, by Γ_{ext} the external boundary of Ω_t and by n the outward unit normal to Ω_t. Let S^+ (resp. S^-) be the part of S corresponding to the positive (resp. negative) direction of the normal n. We define the global domain $Q = \Omega \times (0, T)$ where $\Omega = \overline{\Omega_h} \cup \Omega_t$. (see figure 1.)

The system of equations modeling the electrical activity in the heart is

$$\begin{align*}
\partial_t v_m - \text{div}(\sigma_m \nabla v_m) &= I_{app} + I_{ion}(\varphi, v_m, w, z) \quad \text{in } Q_h := \Omega_h \times (0, T), \\
\text{div}(\sigma_h \nabla u_h) &= -\text{div}(\sigma_i \nabla v_m) \quad \text{in } Q_h, \\
\partial_t w - F(v_m, w) &= 0 \quad \text{in } Q_h, \\
\partial_t z - G(\varphi, v_m, w, z) &= 0 \quad \text{in } Q_h.
\end{align*} \quad (1.3)$$

* Supported by organization LAMSIN
Here, the transmembrane potential v_m is defined as follows
\[
v_m = u_i - u_h, \tag{1.4}\]
where u_i and u_h are the intra- and extra- cellular potentials. The I_{app} is an external applied electrical current and I_{ion} is the ionic current across the membrane which is defined as follows
\[
I_{ion}(\bar{\rho}, v, w, z) = \sum_{i=1}^{N} \bar{\rho}_i y_i(v) \prod_{j=1}^{k} (\tilde{w}_l)_j^{p_l}(v - E_i(z)), \tag{1.5}\]
where
\[
E_i(z) = \gamma_i \log(z_i e^{z_i}), \quad z = (z_1, \ldots, z_m). \tag{1.6}\]

Here γ_i is a constant and we denotes by $z_i, i = 1, \ldots, m$ and z_e the intra- and extracellular concentration.

We define the evolution of the gating variables $w := (w_1, \ldots, w_k)$ and the ionic intracellular concentrations $z := (z_1, \ldots, z_m)$ by the following functions $F(v_m, w)$ and $G(\bar{\rho}, v_m, w, z)$ which are defined as follows
\[
\partial_t w_j = F_j(v_m, w_j) := \alpha_j(v_m)(1 - w_j) - \beta_j(v_m)w_j, \quad j = 1, \ldots, k, \tag{1.7}\]
where α_j and β_j are a positive function with $0 \leq w_j \leq 1$ and
\[
\partial_t z_i = G_i(\bar{\rho}, v_m, w, z) := -J_i(\bar{\rho}, v_m, \log z_i) + H_i(\bar{\rho}, v_m, w, z), \quad \forall i = 1, \ldots, m, \tag{1.8}\]
where
\[
J_i \in C^2(\mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}^k \times \mathbb{R}), \quad 0 < g_*(w) \leq \frac{\partial J_i}{\partial \tau}(\bar{\rho}, v_m, w, \tau) \leq g^*(w), \quad \frac{\partial J_i}{\partial \tau}(\bar{\rho}, v_m, w, 0) \leq L_v(w), \quad \text{with} \quad g_*, g^*, L_v \text{ belong to } C^1(\mathbb{R}^k, \mathbb{R}_+) \quad \text{and} \quad \tag{1.9}\]

Fig. 1. The heart and torso domains.
In order that the intra cellular current does not diffuse outside the heart, we should add the following condition on the interface boundary $\Sigma = S \times (0, T)$

$$\sigma_m \nabla v_m \cdot n = 0 \quad \text{on} \ \Sigma. \quad (1.11)$$

Our mathematical model is based on the coupling of (1.3) with the following diffusion equation in $Q_t = \Omega_t \times (0, T)$

$$\text{div}(\sigma_t \nabla u_t) = 0 \quad \text{in} \ \Omega_t, \quad (1.12)$$

with the following condition on the external boundary $\Sigma_{ext} = \Gamma_{ext} \times (0, T)$ which is assumed to be isolated

$$\sigma_t \nabla u_t \cdot n = 0 \quad \text{on} \ \Sigma_{ext}, \quad (1.13)$$

where u_t and σ_t represent the torso potential and the conductivity tensor of the torso. In order to diffuse informations potentials and currents from the heart to thorax, we need to introduce the following transmission conditions

$$\begin{cases}
v_h &= u_t \quad \text{on} \ \Sigma, \\
\sigma_h \nabla u_h \cdot n &= \sigma_t \nabla u_t \cdot n \quad \text{on} \ \Sigma.
\end{cases} \quad (1.14)$$

To sum up, from (1.3) - (1.11) - (1.12) - (1.13) and (1.14), we obtain the following the coupled heart-torso model

$$\begin{cases}
\partial_t v_m - \text{div}(\sigma_m \nabla v_m) &= I_{app} + I_{ion}(\bar{v}, v_m, w, z) \quad \text{in} \ Q_h, \\
\text{div}(\sigma_t \nabla u_h) &= \text{div}(\sigma_t \nabla v_m) \quad \text{in} \ Q_h, \\
\text{div}(\sigma_t \nabla u_t) &= 0 \quad \text{in} \ Q_t, \\
\partial_t w - \mathbf{F}(v_m, w) &= 0 \quad \text{in} \ Q_h, \\
\partial_t z - \mathbf{G}(\bar{v}, v_m, w, z) &= 0 \quad \text{in} \ Q_h,
\end{cases} \quad (1.15)$$

with the following interface conditions

$$\begin{cases}
\sigma_m \nabla v_m \cdot n &= 0 \quad \text{on} \ \Sigma, \\
v_h &= u_t \quad \text{on} \ \Sigma, \\
\sigma_h \nabla u_h \cdot n &= \sigma_t \nabla u_t \cdot n \quad \text{on} \ \Sigma,
\end{cases} \quad (1.16)$$

and the following external boundary condition

$$\sigma_t \nabla u_t \cdot n = 0 \quad \Sigma_{ext}. \quad (1.17)$$

2 Global Carleman estimate for the coupled heart-torso system

In order to study our inverse problem, we should establish the global Carleman estimate for the coupled heart-torso model which is the key point. We consider
now the following system:
\[
\begin{aligned}
\partial_t v_m - \text{div}(\sigma_m \nabla v_m) &= g \quad \text{in } Q_h, \\
\text{div}(\sigma_h \nabla u_h) &= f_h \quad \text{in } Q_h, \\
\text{div}(\sigma_t \nabla u_t) &= f_t \quad \text{in } Q_t, \\
\partial_t w - F(v_m, w) &= 0 \quad \text{in } Q_h, \\
\partial_t z - G(\tilde{\sigma}, v_m, w, z) &= 0 \quad \text{in } Q_h,
\end{aligned}
\]
with the following interface conditions
\[
\left\{ \begin{array}{lcl}
\sigma_m \nabla v_m \cdot n &=& 0 \quad \text{on } \Sigma, \\
u_h &=& u_t \quad \text{on } \Sigma, \\
\sigma_h \nabla u_h \cdot n &=& \sigma_t \nabla u_t \cdot n \quad \text{on } \Sigma,
\end{array} \right.
\]
and the following external boundary condition
\[
\sigma_t \nabla u_t \cdot n = 0 \quad \Sigma_{\text{ext}}. \tag{2.3}
\]

Theorem 1. (Carleman estimate) There exists $\lambda_0 > 0$ such that for any $\lambda \geq \lambda_0$ there exist $s_0 := s_0(\lambda) > 0$ and $C_\lambda > 0$ such that the solution $(v_m, u) \in H^{1,2}(Q_h) \times H^1(Q)$ to the system (1.15)-(1.16)-(1.17) satisfies
\[
\int_{Q_h} (s\varphi)(|\partial_t v_m|^2 + |\text{div}(\sigma_m \nabla v_m)|^2) + (s\varphi)|v_m|^2 + (s\varphi)^3|\nabla v_m|^2) e^{-2s\varphi} \, dx \, dt \\
+ \int_{Q} (s\varphi)^3|u|^2 + (s\varphi)|\nabla u|^2) e^{-2s\varphi} \, dx \, dt
\leq C_\lambda \left(\int_{Q_h} (s\varphi)^2|g|^2 e^{-2s\varphi} \, dx \, dt + \int_{Q} |f|^2 e^{-2s\varphi} \, dx \, dt + \int_{\Sigma_{\text{ext}}} (s\varphi)|\nabla u_t|^2 e^{-2s\varphi} \, dx \, dt \\
+ \int_{\omega \times (0,T)} ((s\varphi)^5|v_m|^2 + (s\varphi)^3|u|^2) e^{-2s\varphi} \, dx \, dt \right), \tag{2.4}
\]
for any $s > s_0, g \in L^2(Q_h)$ and $f = (f_h, f_t) \in L^2(Q)$.

3 Inverse problem for conductivity coefficients

Let $\omega \subset \Omega_h$ be a non-empty subdomain of Ω_h, then there exists a weight function $\beta \in C^3(\overline{\Omega})$, $\beta_i = \beta_i(\Omega_i) \in C^2(\overline{\Omega_i})$ with $i = h, t$ satisfied some conditions. We denote $t \in (0, T)$ and $t_0 = T/2$. and we consider two sets of coefficients $(\sigma_m, \sigma_h, \sigma_t)$ and $(\tilde{\sigma}_m, \tilde{\sigma}_h, \tilde{\sigma}_t)$ and the corresponding solutions (u, v_m, w, z) and $(\tilde{u}, \tilde{v}_m, \tilde{w}, \tilde{z})$ of (1.15)-(1.16)-(1.17). Let α be a given smooth positive function $\alpha(x) \geq \alpha_0$, $x \in \overline{\Omega}_h$ we define the the following sets of admissible coefficients:
\[
A^h_{\alpha} = \{ (\sigma_i, \sigma_e) \in C^2(\overline{\Omega_h}), \sigma_i \geq \alpha \sigma_e \geq \alpha > 0 \} \tag{3.1}
\]
\[
A^t_{\alpha} = \{ \sigma_t \in C^2(\overline{\Omega_t}), \sigma_t \geq \alpha > 0 \} \tag{3.2}
\]
for some positive constants c_1, c_3 and c_4. In order to formulate our stability and uniqueness results of conductivities, we need to introduce the following assumptions:
Assumption (A.1) There exists a constants $c_0 > 0$ such that
\[0 < c_0 < |\nabla \beta(x) \cdot \nabla \hat{d}(x, t_0)|, \quad \text{in} \quad \overline{\Omega} \setminus \omega_0, \quad \omega_0 \subset \omega, \]
with $\hat{d} \in \{\hat{v}_m, \hat{u}_h, \hat{u}_t\}$.

Assumption (A.2) There exists a constants $M > 0$ such that
\[\|\hat{v}_m\|_{W^{2,\infty}(0,T;W^{2,\infty}(\Omega_h))} + \|\hat{u}_h\|_{W^{2,\infty}(0,T;W^{2,\infty}(\Omega_h))} + \|\hat{u}_t\|_{W^{2,\infty}(0,T;W^{2,\infty}(\Omega_t))} \leq M. \]

Theorem 2. (Stability) We assume that (A.1) and (A.2) are satisfied. Then, there exists a positive constant $C > 0$ depending on Ω, T, t_0, M, such that
\[
\|\sigma_1 - \hat{\sigma}_1\|_{H^1(\Omega_h)} + \|\sigma_e - \hat{\sigma}_e\|_{H^1(\Omega_h)} + \|\sigma_t - \hat{\sigma}_t\|_{H^1(\Omega_h)} \\
\leq C \left(\|(v_m - \hat{v}_m)(\cdot, t_0)\|_{H^2(\Omega_h)} + \|(u_t - \hat{u}_t)(\cdot, t_0)\|_{H^2(\Omega_h)} \\
+ \|(w - \hat{w})(\cdot, t_0)\|_{H^1(\Omega_h)} + \|(\mathbf{z} - \hat{\mathbf{z}})(\cdot, t_0)\|_{H^1(\Omega_h)} + \|\sigma_1 - \hat{\sigma}_1\|_{H^2(\omega)} \\
+ \|(v_m - \hat{v}_m)_{H^2(0,T;L^2(\omega))} + \|(u_t - \hat{u}_t)_{H^2(0,T;L^2(\omega))} + \|(u_t - \hat{u}_t)_{H^2(0,T;H^1(\Sigma_{ext}))} \right),
\]

for any $(\sigma_1, \sigma_e), (\hat{\sigma}_1, \hat{\sigma}_e) \in \mathcal{A}^h$, $\sigma_t, \hat{\sigma}_t \in \mathcal{A}^t$ satisfying $(\partial^\alpha \sigma_1, \partial^\alpha \sigma_e) = (\partial^\alpha \hat{\sigma}_1, \partial^\alpha \hat{\sigma}_e)$ on S, $|\alpha| \leq 1$ and $\sigma_t > \sigma_h$ on S.

As a consequence, we can drive the following uniqueness result

Corollary 1. (Uniqueness) Let us consider the same assumptions in Theorem 2 and let $(v_m, u_t, w, z) = (\hat{v}_m, \hat{u}_t, \hat{w}, \hat{z})$ at a fixed time t_0, $(v_m, u_h) = (\hat{v}_m, \hat{u}_h)$ in $\omega \times (0,T)$, $u_t = \hat{u}_t$ in the external boundary Σ_{ext} and $\sigma_1 = \hat{\sigma}_1$ in ω_0. Then, we have the following uniqueness result
\[(\sigma_1, \sigma_e) = (\hat{\sigma}_1, \hat{\sigma}_e) \quad \text{in} \quad \Omega_h, \quad \text{and} \quad \sigma_t = \hat{\sigma}_t \quad \text{in} \quad \Omega_t. \]

References