
A CGM-Based Parallel Algorithm Using the
Four-Russians Speedup for the 1-D Sequence

Alignment Problem

Jerry Lacmou Zeutouo* — Grace Colette Tessa Masse* — Franklin Ingrid
Kamga Youmbi*

* Department of Mathematics and Computer Science
Faculty of Science, University of Dschang
PO Box 67, Dschang-Cameroon
jerrylacmou@gmail.com, gracetessa98@gmail.com, xingridkamga@gmail.com

ABSTRACT. The CGM model is one of the most widely used models for the design of parallel al-
gorithms. It has shown its efficiency in solving several problems modeled by dynamic programming
such as the longest common subsequence problem, which is a special case of the one-dimensional
sequence alignment problem. This problem consists in aligning two strings of length n to measure
their similarity. It is widely used in many fields, particularly in Bioinformatics where n is usually very
large. Brubach and Ghurye proposed a sequential solution based on the Four-Russians speed-up
that requires O(n2/ logn) execution time. To the best of our knowledge, there are not yet parallel
solutions on the CGM model to solve this problem. This paper is exclusively dedicated to this task.
Our solution applies to both local and global similarity computations and is based on Brubach and
Ghurye’s sequential algorithm. It requires O(n2/p logn) execution time with O(p) communication
rounds on p processors.

RÉSUMÉ. Le modèle CGM est l’un des modèles les plus utilisés pour la conception d’algorithmes
parallèles. Il a montré son efficacité pour la résolution de plusieurs problèmes modélisés par la pro-
grammation dynamique comme le problème de la plus longue sous-séquence commune, qui est un
cas particulier du problème d’alignement de séquence à une dimension. Ce problème consiste à
aligner deux chaînes de longueur n afin de mesurer leur similarité. Il est largement utilisé dans de
nombreux domaines, en particulier dans la Bio-informatique où n est généralement très grand. Bru-
bach et Ghurye ont proposé une solution séquentielle basée sur l’accélération de Four-Russians qui
nécessite un temps d’exécution de O(n2/ logn). À notre connaissance, il n’existe pas encore de
solutions parallèles sur le modèle CGM pour la résolution de ce problème. Ce papier est exclusive-
ment dédié à cette tâche. Notre solution s’applique aux calculs de similarité locaux et globaux, et
est basée sur l’algorithme séquentiel de Brubach et Ghurye. Elle nécessite un temps d’exécution de
O(n2/p logn) avec O(p) rondes de communication sur p processeurs.

KEYWORDS : parallel algorithm, CGM model, dynamic programming, sequence alignment, Four-
Russians

MOTS-CLÉS : algorithme parallèle, modèle CGM, programmation dynamique, alignement de sé-
quences, Four-Russians

Proceedings of CARI 2020
Bruce Watson, Eric Badouel, Oumar Niang, Eds.

Ecole Polytechnique de Thiès, Sénégal
October 2020

1. Introduction
Bioinformatics is a multi-disciplinary field of Biotechnology research that involves

biologists, computer scientists, physicians, mathematicians, and bioinformaticians, in-
tending to solve a scientific problem posed by Biology. It focuses on the development and
application of computationally intensive methods to improve the understanding of bio-
logical processes. One of its fundamental problems is the alignment of sequences, crucial
for molecular prediction, molecular interactions and phylogenetic analysis. It is generally
used to extract functional and evolutionary information about genes and proteins.

Sequence alignment is the problem of comparing biological sequences by looking
for a series of nucleotides or amino acids that appear in the same order in the input se-
quences, possibly introducing gaps [1]. It is a means of visualizing the similarity between
sequences based on the notions of similarity or distance. Two types of alignments are
considered: global alignments, which take into account the whole of two sequences to be
compared, and local alignments, which make it possible to detect the segment of the first
sequence which is most similar to a segment of the other. Due to dynamic programming,
both types of alignments can be run in O(n2) time where n is the length of two strings
[2]. Based on the Four-Russians method, several sped-up sequential solutions have been
proposed like the algorithm of Brubach and Ghurye running in O(n2

logn) time [3].
The parallelization of the sequential algorithm on different parallel computing models

was extensively treated by the community of parallel processing researchers. A PRAM
algorithm running in O (log n logm) time with nm

logm CREW processors has been pro-
posed by Apostolico et al. [4]. Alves et al. [5] proposed a parallel solution for a variant
of the problem under the CGM model using weighted graphs that requires log p rounds
and runs in O(n2 logm/p) time. Recently, Kim et al. [6] have proposed a space-efficient
alphabet-independent Four-Russians’ lookup table and a multithreaded Four-Russians’
edit distance algorithm. The experiments they performed on CUDA-supported GPU show
that the algorithm runs about 942 times faster than the sequential version of the orig-
inal Four-Russians’ algorithm for 100 pairs of random strings of length approximately
1, 000 when the alphabet size |Σ| = 4 and the Four-Russians tiling factor t = 4. To our
knowledge, there is no solution on the CGM model for solving both the global and local
sequence alignment problems.

In this paper, we tackle the problem of parallelizing the Brubach and Ghurye’s se-
quential algorithm [3] for the one-dimensional sequence alignment problem on the CGM
model (Coarse-Grained Multicomputer). Our solution requires O(n2/p log n) execution
time with O(p) communication rounds on p processors. The choice of the model is due
to the fact that it is more suitable to the current parallel architectures and it has already
been used to efficiently solve several problems such as the optimal binary search tree [7].

The remainder of this paper is organized as follows: in section 2 Brubach and Ghurye’s
solution to the problem is recalled, then in section 3, we present our CGM-based solution
and present the experimental results in section 4. The last section concludes our work.

2. Sequential algorithm for the 1-D sequence alignment
problem

The sequence alignment method seeks to optimize the alignment score. This score
is related to the similarity rate between the two compared sequences. It measures the

Proceedings of CARI 2020

number of edit operations it takes to convert a sequence X into another Y . They include
insertions, deletions, and substitutions of a single character. The weighted variant assigns
a cost to each of the mentioned operations and through the use of a penalty matrix in case,
costs appear not to be constant. The computation of the line-up score varies from global
alignment to local alignment.

2.1. Global alignment
A global alignment of two sequences X and Y can be given by computing the distance

between them [8]. The elementary editing operations are described as follows: substitu-
tion of an a symbol by a b symbol, deletion of an a symbol and insertion of a b symbol.
There is also the ability to calculate global alignments using similarity scores instead of
distance. A score is associated with each elementary editing operation. Given an alphabet
Σ of symbols, for a, b ∈ Σ: Sub(a, b) is the score for substituting symbol a with symbol
b, Del(a) is the score for deleting symbol a, Ins(a) is the score for inserting symbol a.

To compute the score d(X,Y) for the two sequences X and Y of length n, a dynamic
programming table M with n + 1 rows and n + 1 columns is used such that T [i, j] =
d(X[0 . . . i], Y [0 . . . j]) for i = 0, . . . , n and j = 0, . . . , n. It follows that d(X,Y) =
T [n, n]. The values of the table T is computed by the following recurrence formula (1)
for i = 0, 1, . . . , n and j = 0, 1, . . . , n :

T [i, j] = max

T [i− 1, j − 1] + Sub(X[i], Y [j]),

T [i− 1, j] + Del(X[i]),

T [i, j − 1] + Ins(Y [j]).

(1)

For any 0 ≤ i ≤ n, 0 ≤ j ≤ n, the boundary conditions of the recursive formular (1) are
T [0, 0] = 0, T [i, 0] = T [i− 1, 0] + Del(X[i]) and T [0, j] = T [0, j − 1] + Ins(Y [j]).

2.2. Local alignment
A local alignment of two sequences X and Y consists in finding the X segment that

is most similar to a Y segment [8]. The local edit score of two sequences X and Y is
defined by s(X,Y), the maximum similarity between an X segment and a Y segment.
To compute s(X,Y) for the two sequences X and Y of length n, we use a dynamic
programming table Ts with n+ 1 rows and n+ 1 columns such that for i = 0, . . . ,m and
j = 0, . . . , n, Ts[i, j] = max{s(X[l . . . i], Y [k . . . j])|0 ≤ l ≤ i and 0 ≤ k ≤ j} ∪ {0}.

For i = 0, 1, . . . , n and j = 0, 1, . . . , n, the values in the table Ts can be calculated
with the recurrence formula (2) :

Ts[i, j] = max

Ts[i− 1, j − 1] + Sub(X[i], Y [j]),

Ts[i− 1, j] + Del(X[i]),

Ts[i, j − 1] + Ins(Y [j]),

0.

(2)

The boundary conditions of the recursive formular (2) are Ts[0, 0] = Ts[i, 0] = Ts[0, j] =
0 for any 0 ≤ i ≤ n, 0 ≤ j ≤ n. Fig. 1a shows the form of the task graph or dependency
graph 1 for both global and local sequence alignment problems when n = 5. The value
at position (i, j) of the table Ts depends only on the values at the three neighbouring
positions (i− 1, j − 1), (i− 1, j) and (i, j − 1).

1. The task graph is equivalent for dynamic programming tables T and Ts.

A CGM-based Parallel Algorithm using the Four-Russians Speedup
 for the 1-D Sequence Alignment Problem

(a) Task graph for a problem of size 5× 5. (b) A single t-block.

Figure 1 – Task graph and a single t-block.
2.3. Speedups and the Four-Russians’

Dynamic programming algorithms can sometimes be made even faster by applying
speedups such as the Knuth-Yao quadrangle-inequality speedup or the Four-Russians
speedup.

Significantly applied to numerous problems, the Four-Russians technique arose from
works [9] related to boolean matrix multiplication conducted by the four authors (only
one is Russian though): Arlazarov, Dinic, Kronrod, and Faradzev. The idea behind the
speedup is to tile the dynamic programming table into smaller blocks whose solutions are
foreseen, precomputed and stored in a lookup table. The goal sought is spending less time
on those by merely searching for them.

Unsurprisingly, an improvement (and sole) to this quadratic time bound has been
first proposed using the Four-Russians technique by Masek and Paterson [2], achieving
O(n2/ log n). Crochemore et al. [10] later achieved the same time bound for unrestricted
scoring matrices. Consequent to the conditional hardness results [11], this is unlikely
to be improved further for arbitrary strings even on small alphabets, unless the Strong
Exponential Time Hypothesis (SETH) does not hold.

2.4. Brubach and Ghurye’s efficient lookup table
The bottleneck in the aforementioned speedup lies in the space demanded by the table,

and the time spent computing it. In 2018, Brubach and Ghurye [3] introduced a process
in which the Four-Russians lookup table can be built in O(t2 lg t), queried in O(t) and
stored in O(t2) space. t represents the size of the smaller blocks used for the ti phase.
This globally outweighs all other algorithms known to date.

All credit to Masek and Paterson [2], the t-blocks within the dynamic programming
table are tiled in a way they overlap by one column/row on each side as shown in Fig.
1b. Given a t-block first row and column, the block function of the lookup process has
to provide its last row and column. Running the block function time and again in a row-
wise (or column-wise) manner will eventually yield the global edit distance score in the
bottom-right cell.

Aside from further efficiency, there is a huge improvement in the approach proposed
by Brubach and Ghurye: the lookup table construction is only concerned about the strings
provided as input. Let’s delve into this new way of storing and querying lookup entries.

Proceedings of CARI 2020

2.4.1. Notation
Consider a single t-block. Let U = {u1, u2, . . . , u2t−1} denote the ordered set of cell

labels ranging from the top-right cell to the bottom-left cell of the first row and column
of the block. Likewise, let V = {v1, v2, . . . , v2t−1} denote the ordered set of cell labels
ranging from the top-right cell to the bottom-left cell of the last row and column of the
block. Notice that u1 and v1 label the same top-right cell, as well as u2t−1 and v2t−1
label the bottom-left cell.

For a cell labeled u, the value in is denoted cu. Formally, the block function is to return
cv(v ∈ V) values given cu(u ∈ U) values. This is solved efficiently by considering least
costs cu,v of paths from u to v through the block grid. We have that cv = min

u∈U
(cu + cu,v).

2.4.2. Storing entries
The tiled t-blocks define sub-problems which pertain to corresponding sub-strings of

the input. That said, for every sub-problem, we compute and store costs cu,v as defined
above, in a |V | × |U | matrix M with a row for each v ∈ V and a column for each u ∈ U .
Entry Mji will store the cost cui,vj . This matrix obviously consumes O(t2) in memory
space.

As to computing the cost cu,v , this is instantly equivalent to finding the weight of a
shortest path from cell u to cell v through a t× t grid. Jeanette Schmidt [12] came up in
1995 with a solution running inO(t2 lg t) time for every pair (u, v), by taking the problem
to collections of binary trees.

2.4.3. Querying entries
A set of values cu are provided to retrieve another set of cv , both of size (2t− 1). Due

to the peculiarity of the lookup table, it is possible to complete this in O(t) time.
Matrices M used to store weights of shortest paths are proven to be Monge arrays

[12]. And so will be the matrix M ′ derived from M , such that M ′ji = cui + Mji. The
classic SMAWK algorithm [13] can therefore apply to obtain the row-minima of M ′ in
O(t) time. Since not all M ′ entries are required, they are generated on the fly. Do note
that these row-minima correspond to the aspired results cvj

= min
u∈U

(cu + cu,vj
).

Algorithm 1 draws the big picture.

Algorithm 1: The general structure of sequential algorithm

Input : Two strings X and Y of the same length n
Output: The edit distance score between X and Y

1 Initialize a full (n+ 1)× (n+ 1) dynamic programming table D, by filling up its
first row and column with accurate offset values;

2 Tile the whole table into smaller blocks of size t as described above;
3 for every block do
4 Compute and store the corresponding lookup matrix;

5 for every block in a row-wise manner do
6 Set upper-left corner to 0;
7 Lookup block’s last row and column using the Four-Russians block function;

8 return n + sum(D[n + 1]);

A CGM-based Parallel Algorithm using the Four-Russians Speedup
 for the 1-D Sequence Alignment Problem

3. CGM algorithm for the 1-D sequence alignment problem
This section describes our CGM solution. As the sequential algorithm, our solution

is divided into two parts. Firstly, each processor computes the lookup table through the
Brubach and Ghurye’s sequential algorithm in O(t2 lg t). Secondly, we partition the task
graph into sub-graphs of the same size, and we distribute them fairly onto the processors.

3.1. Partitioning strategy
Our technique consists in partitioning the task graph in two steps:

1) firstly, we partition the task graph into small blocks of size t referred to as t-
blocks such that any two adjacent t-blocks overlap by either a row or column. After this
first partitioning, the task graph is divided into k lines and k columns where k =

⌈
n

t−1

⌉
;

2) next, we subdivide the n2

t2 t-blocks into p lines and p columns of blocks referred

to as macro-blocks and denoted by MB(i, j). MB(i, j) is a matrix of size
⌈
k
p

⌉
×
⌈
k
p

⌉
and

is identified by the node on the lower right corner. Its evaluation computes the distance
between X[1 . . . i] and Y [1 . . . j]. Thus, MB(n, n) will contain the final solution to the
problem.

In the remainder of this paper, z =
⌈
k
p

⌉
. Figure 2 shows a scenario of this partitioning

for k = 8 and p = 4. The number in each macro-block represents the diagonal to which
it belongs.

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

Figure 2 – Task graph partitioning into 8× 8 t-blocks and 4× 4 macro-blocks for k = 8
and p = 4.

Proceedings of CARI 2020

REMARK. —
After partitioning,

1) all macro-blocks of the task graph are of the same size z×z when n = pk(t−1);
2) any two adjacent macro-blocks overlap by either a row or column;
3) two blocks MB(i, j) and MB(t, u) belong to the same level if |t− i| = |u−j|;
4) the first diagonal of macro-blocks of the task graph (level 1) contains only the

macro-block located in the top left corner of the graph, and the last one (level 2p − 1)
consists only of the macro-block MB(n, n);

5) from one diagonal to another, the number of macro-blocks increases by one unit
starting from diagonal 1 to diagonal p, and decreases by one unit from the diagonal p to
the diagonal (2p− 1).

Lemma 1 (Dependencies between macro-blocks). With z =
⌈
k
p

⌉
, let’s consider a macro-

block MB(i, j) of the task graph:

1) the evaluation of this block depends only on the sets of nodes S, U and V of
blocks MB(i− z, j − z), MB(i− z, j) and MB(i, j − z) respectively where S, U and
V are defined by:

- S = {(i− z, j − z)};
- U = {(i− z, j − z + 1), (i− z, j − z + 2), . . . , (i− z, j)};
- V = {(i− z + 1, j − z), (i− z + 2, j − z), . . . , (i, j − z)};

2) after the evaluation of this block, the new sets S′, U ′, V ′ will be communicated
respectively to t processors that will evaluate the blocks MB(i+ z, j + z), MB(i+ z, j)
and MB(i, j + z). These sets are defined by:

- S′ = {(i, j)};
- U ′ = {(i, j − 1), (i, j − 2), . . . , (i, j − z + 1)};
- V ′ = {(i− 1, j), (i− 2, j), . . . , (i− z + 1, j)}.

Proof. These dependencies between blocks come from the dependencies between nodes
of the task graph.

3.2. Mapping macro-blocks onto processors
We use a snake-like mapping [7] which allows some processors to evaluate at most

one block more than the others. This distribution consists in assigning all macro-blocks
of a diagonal from the top left corner to the bottom right corner. This process is renewed
until all processors have been used, starting with processor 0 and traveling through the
blocks with a "snake-like" path. Figure 3 illustrates such a distribution for 4 processors.

Lemma 2. After the partitioning of the task graph and snake-like distribution scheme,
each processor evaluates exactly p macro-blocks.

Proof. There are p2 macro-blocks after the partitioning of the task graph. Therefore, it is
clear that each processor evaluates exactly p blocks.

A CGM-based Parallel Algorithm using the Four-Russians Speedup
 for the 1-D Sequence Alignment Problem

Figure 3 – Snake-like distribution onto processors for p = 4.
3.3. Overview of the algorithm

We present our CGM solution for the sequence alignment problem. Brubach and
Ghurye’s sequential algorithm is used for local computations. Based on the previous
partitioning strategy and the mapping of blocks onto processors, the corresponding CGM
algorithm is presented in algorithm 2.

Algorithm 2: The general structure of our CGM algorithm
Data: Two strings X and Y of the same length n
Result: The edit distance score between X and Y

1 Compute and store the lookup table for the n2

t2 t-blocks using the algorithm 1;
2 for d = 1 to 2p− 1 do
3 Evaluation of the macro-blocks of diagonal d, using the algorithm 1;
4 Communication of the sets S′, U ′ and V ′ to the processors of the blocks of

diagonal d + 1;

Lemma 3. The evaluation of a macro-block of size
⌈

n
p(t−1)

⌉
×
⌈

n
p(t−1)

⌉
requiresO

(
n2

p2t

)
computation time.

Proof. The evaluation of a t-block needs O(t) time, and a macro-block contains at most
O
⌈

n2

p2t2

⌉
t-blocks.

Lemma 4. Our CGM algorithm requires O
(

n2

pt

)
time steps per processor.

Proof. According to lemmas 2 and 3, it is clear that the computation time on each pro-
cessor is O

(
n2

p2t

)
× p = O

(
n2

pt

)
.

Theorem 1. By subdividing the task graph into macro-blocks of size
⌈

n
p(t−1)

⌉
×
⌈

n
p(t−1)

⌉
and using the snake-like distribution scheme, our CGM algorithm requires O

(
n2

p logn

)
execution time with O(p) communication rounds when t = log n.

Proceedings of CARI 2020

Proof. Our CGM algorithm evaluates the task graph diagonal after diagonal starting from
diagonal 1. Each processor evaluates at most one block in a diagonal. The evaluation of
a macro-block requires O

(
n2

p2t

)
time steps according to lemma 3. Then, the evaluation

of a diagonal of blocks needs O
(

n2

p2t

)
time steps. Since there are 2p − 1 diagonals of

blocks in the task graph, the execution time is O
(

n2

p2t

)
× (2p − 1) = O

(
n2

pt

)
and the

number of communication rounds is O(p). Therefore, when t = log n, our solution runs
in O

(
n2

p logn

)
.

4. Experimental results
In this section, we benchmark our CGM solution with Brubach and Ghurye’s sequen-

tial algorithm. We implemented this algorithm on the cluster dolphin of the MATRICS
platform of the University of Picardie Jules Verne 2 using 60 computation nodes (48 nodes
called thin nodes with 48× 128GB of RAM, and 12 named thick nodes with 12× 512GB
of RAM). Each node is made of two Intel Xeon Processor E5-2680 V4 (35M Cache, 2.40
GHz) and each of them consists of 14 cores. All nodes are interconnected with Omni-
Path links providing 100Gbps throughput. The C++ programming language is used, on
the operating system CentOS Linux release 7.6.1810. The inter-processor communication
is implemented with the MPI library (OpenMPI version 1.10.4).

We use a real biological DNA sequences 3 with |Σ| = 4. The results presented here
are derived from its execution for different values of the triplet (m,n, p), where m and
n are the size of sequences, with values ranging from 105 to 106, and p is the number of
processors, with values in the set {1, 2, 4, 8, 16, 32, 48}.

Figures 4 and 5 show that our solution keeps good performance when the size of se-
quences and the numbers of processors increase. For m = 106, our algorithm runs about
11.43 times faster than the Brubach and Ghurye’s sequential algorithm on 16 processors.
The speed-up increases up to 20.40 on 32 processors and 30.05 on 48 processors. From all
this, we can conclude that our algorithm is scalable to the increase of the size of sequences
and the numbers of processors.

5. Conclusion and future research directions
By allowing a faster lookup table construction, Brubach and Ghurye have enhanced

Masek and Paterson’s Four-Russians-based solution to the edit distance problem [3]. We
attempted in this paper to parallelize their results in application to the one-dimensional
sequence alignment problem. Based on the CGM model, our solution clusters t-blocks
into macro-blocks and follows the snake-like distribution mapping pattern onto p proces-
sors to achieve for O(p) rounds of communication, an execution time in O(n2/p log n).
Experimental results show good agreement with theoretical forecasts. Noticing the fact
that single processors uselessly compute large sets of entries in their respective lookup
tables, one might be interested in cutting off the waste. Or even extend our solution to
address the two-dimensional sequence alignment problem.

2. https://www.u-picardie.fr/recherche/presentation/plateformes/plateforme-matrics-382844.kjsp
3. https://www.ncbi.nlm.nih.gov/nuccore/110645304

A CGM-based Parallel Algorithm using the Four-Russians Speedup
 for the 1-D Sequence Alignment Problem

Figure 4 – Execution time for m ∈
[
105, . . . , 106

]
, p ∈ {1, 16, 32, 48}.

Figure 5 – Execution time for m ∈ {15×104, 25×104, 35×104}, p ∈ {2, 4, 8, 16, 32, 48}.
Acknowledgements

The authors wish to express their gratitude to the computer Lab-MIS of the Univer-
sity of Picardie Jules Verne which made it possible to carry out the experimentations of
this work. The authors also thank Dr. KENGNE TCHENDJI Vianney whose valuable
comments and suggestions have significantly improved the readability of this work.

6. References

[1] C. SHARMA , A. .K VYAS, “Parallel Approaches in Multiple Sequence Alignments”, Interna-
tional Journal of Advanced Research in Computer Science and Software Engineering, vol. 4,
num. 2, 2014.

[2] W. MASEK, M. PATERSON, “A faster algorithm computing string edit distances”, Jour-
nal of Computer and System sciences, vol. 20, num. 1, pp. 18–31, 1980. doi:10.1016/
0022-0000(80)90002-1.

[3] B. BRUBACH, J. GHURYE, “A Succinct Four Russians Speedup for Edit Distance Computa-
tion and One-against-many Banded Alignment”, Annual Symposium on Combinatorial Pattern
Matching (CPM 2018), pp. 1–12, 2018. doi:10.4230/LIPIcs.CPM.2018.13

Proceedings of CARI 2020

[4] A. APOSTOLICO, M. J. ATALLAH, L. L. LARMORE, S. MACFADDIN, “Efficient parallel
algorithms for string editing and related problems”, SIAM Journal on Computing, vol. 19,
num. 5, pp. 968–988, 1990.

[5] C. E. R. ALVES, E. N. CÁCERES, F. DEHNE, P. SHOR, “Parallel Dynamic Programming for
Solving the String Editing Problem on a CGM/BSP”, Proceedings of the fourteenth annual
ACM symposium on Parallel algorithms and architectures, pp. 275–281, 2002. doi:10.1145/
564870.564916

[6] Y. KIM, J.C. NA, H. PARK, J.S. SIM, “A space-efficient alphabet-independent Four-Russians’
lookup table and a multithreaded Four-Russians’ edit distance algorithm”, Theoretical Com-
puter Science, vol. 656, num. pp 173–179, 2016. doi:10.1109/ISTCS.1995.377044

[7] V. K. TCHENDJI, “Solutions parallèles efficaces sur le modèle CGM d’une classe de problèmes
issus de la programmation dynamique”, Université de Picardie Jules Verne, Amiens, France,
Ph.D. Thesis , 2014.

[8] E. CHANONI , T. LECROQ, A. PAUCHET, P. SHOR, “Une nouvelle heuristique pour
l’alignement de motifs 2D par programmation dynamique”, Journées Francophones de Plani-
fication, Décision et Apprentissage pour la conduite de systèmess, Jun 2008, Metz, France, pp.
83–92, 2008.

[9] V. ARLAZAROV, Y. DINITZ, M. KRONROD, I. FARADZHEV, “On economical construction of
the transitive closure of an oriented graph”, Doklady Akademii Nauk, vol. 194, num. 3, pp.
487–488, 1970.

[10] M. CROCHEMORE, G. LANDAU, M. ZIV-UKELSON, “A subquadratic sequence alignment
algorithm for unrestricted scoring matrices”, SIAM journal on computing, vol. 32, num. 6, pp.
1654–1673, 2003. doi:10.1137/s0097539702402007

[11] A. BACKURS, P. INDYK, “Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false)”, Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pp. 51–58, 2015. doi:10.1145/2746539.2746612

[12] J. P. SCHMIDT, “All shortest paths in weighted grid graphs and its application to finding
all approximate repeats in strings”, Proceedings Third Israel Symposium on the Theory of
Computing and Systems, pp 67–77, 1995. doi:10.1109/ISTCS.1995.377044

[13] A. AGGARWAL, M. KLAWE, S. MORAN, P. SHOR, R. WILBER, “Geometric applications
of a matrix-searching algorithm”, Algorithmica, vol. 2, num. 1-4, pp. 195–208, 1987. doi:
10.1145/564870.564916

A. Description of the Coarse-Grained Multicomputer model
The BSP/CGM model (Bulk Synchronous Parallel/Coarse-Grained Multicomputer)

seems to be the best for the design of algorithms that are not too dependent on a particular
architecture [7]. A CGM machine is a set of p processors, each having its local memory
of size s (with O(s)� O(1)) and connected through a router able to deliver messages in
a point-to-point manner. Each CGM parallel algorithm is an alternation of local compu-
tations and global communication rounds. Each communication round consists in routing
a single h-relation with h = O(s). Each CGM computation or communication round
corresponds to a BSP super-step having a communication cost g × s [7]. Here, g is the
cost of communication of a word in the BSP model. To produce an efficient BSP/CGM
parallel algorithm, the effort of the designers must be to maximize speed-up and minimize
the number of communication rounds (ideally, it must be independent of the problem size,
and constant in the optimum).

A CGM-based Parallel Algorithm using the Four-Russians Speedup
 for the 1-D Sequence Alignment Problem

