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ABSTRACT. The Anaerobic Digestion Model No.1 (ADM1) is by far the most detailed model for the
simulation and monitoring of Anaerobic Digestion (AD) processes. However, the ADM1 model is not
dedicated for control purposes, due to its high dimension with 35 state variables. Dynamic Mode
Decomposition (DMD) technique was applied to reduce the ADM1 order, using data generated from
the Benchmark Simulation Model No. 2 (BSM2). The method allows to obtain a global linear model
with only 7 state variables, which are coherent with dominant dynamics of the ADM1. We show in
simulation that we can reconstruct original state variables of ADM1 model.

RÉSUMÉ. Le modèle ADM1 (Anaerobic Digestion Model No.1) est le modèle phénoménologique le
plus détaillé de la digestion anaérobie. Néanmoins, ce modèle n’est pas dédié pour le contrôle du
processus, à cause de sa complexité. Dans cet article, la technique DMD (Dynamic Mode Decompo-
sition) pour la réduction de modèles a été appliquée au ADM1, en utilisant des données générées par
le simulateur Benchmark Simulation Model No. 2 (BSM2). La méthode permet d’obtenir un modèle
linéaire global avec seulement 7 variables d’état, qui sont cohérentes avec les dynamiques domi-
nantes de l’ADM1. Nous montrons dans la simulation que nous pouvons reconstruire les variables
d’état originales du modèle ADM1.
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1. Introduction
Anaerobic Digestion (AD) is a promising process for wastewater and waste solid treat-

ment, and biogas production. AD is a very complex process, which involves many bacteria
consortia and several biochemical reactions. The Anaerobic Digestion Model N.1 (ADM1)
is the most complete phenomenological model of AD. It integrates 35 state variables and
more than 130 parameters [1]. Unfortunately, this model is not dedicated for control pur-
poses. In the literature, different technique have been used for the reduction of ADM1
model. Homotopy method based on the eigenvalues association of ADM1 model was ap-
plied by Hassam et al. [2] and, a reduced linear model of 14 state variables was obtained.
Khedim et al. [3], used a state variables association technics to establish algebraic com-
binations between variables of a reduced Microalgae Anaerobic Digestion model (MAD)
and those of the ADM1 model. A Principal Component Analysis (PCA) technics was used
by Garcia-Dieguez et al. [4], on synthetic data from the ADM1 in order to derive a small-
est model based only on two biochemical reactions. In this paper, we propose to reduce
the ADM1 model, by using Dynamic Mode Decomposition (DMD) technics in order to
derive a simple global linear model. First, the ADM1 is presented and the principle of its
modeling is discussed. Then, the DMD method is introduced and applied to reduce the
ADM1 dimension. Simulation results are obtained and discussed, before conclusion and
perspectives are drawn.

2. Anaerobic digestion model No.1
The ADM1 model developed by International Water Association (IWA) Task Group

[1], describes in details the AD process. It can be used as a virtual AD bioreactor, for
generating data to validate some AD simple models, elaborate optimal control laws or
estimate inaccessible state variables. ADM1 describes AD in five steps: disintegration,
hydrolysis, acidogenesis, acetogenesis and methanogenesis [1]. It considers both bio-
chemical and physicochemical processes (Figure 1), where Organic load is measured in
COD unit (Chemical Oxygen Demand), which represents the amount of oxygen needed to
decompose organic matters in wastewater.

The ADM1 implementation of a Continuous Stirred Tank Reactor (CSTR) for both
liquid and gas phases is described in Figure 2, where the following notations are used
for: q = flow, V = volume, ξ = concentration of substrates and biomasses (soluble and
particulate components), ρgas,T = liquid/gas transfer kinetic rates, Sgas,i = concentration
of gas i, Pgas,i = pressure of gas i.
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Figure 1 – Reaction paths and COD flux as described in ADM1. [1]

Figure 2 – Schematic diagram of a typical anaerobic CSTR. [1]

The simulation of the ADM1 needs resolution of deferential and algebraic equations
(DAE), which are based on the following mass balance law [1].

dξliq,i
dt

=
q

V
(ξin,i − ξliq,i) +

Nb∑
j=1

ρivij (1)

Where ξliq,i are the concentrations of components ξi in the reactional bulk with input
concentrations ξin,i, ρi are stoichiometric coefficients for degradation or production of
ξi, vij are biological kinetics related to the reaction of ξi, Nb is the number of reactions
and D = q

V is the dilution rate which represents the control variable. In general, The
ADM1 model integrates 19 biochemical kinetic processes, 35 state variables, more than
130 parameters and, simulates substrates degradation processes, specific growth and decay
processes of biomasses [5]. It is taken as the state-of-the-art model because of the huge
validation success confirmed by the practitioners [6]. A very important application of
ADM1 is its implementation in the Benchmark Simulation Model N.2 (BSM2), in order
to test control strategies and supervise virtual processes [7]. In this paper, we used the
BSM2 to generate virtual data, which will be used by DMD method to derive a simple
global linear model from the ADM1.
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3. DMD Algorithm
Dynamic Mode Decomposition (DMD) is a new data-driven technique, used to obtain

global linear models with reduced order from higher dimensional systems as the ADM1.
The DMD principle is collecting snapshots of data xk from a dynamical system at sample
time tk, (k = 1, 2, 3...m) and then, generating a reduced model which represents the
most coherent and dominant dynamics of the original system. The DMD algorithm can
be considered as a regression of linear dynamics represented by the scheme below (2)
and, it is the result of a combination between spatial dimensionality reduction and Fourier
transform in time [8].

xk
A−→ xk+1 (2)

The operator A is a linear combination between xk and xk+1, which is chosen so that
the least square criterion ‖xk+1−Axk‖2 is minimized for k = 1, 2, 3...m− 1. The DMD
method can be easily applied, since practically no hypotheses are needed about the original
system. The algorithm uses the Singular Values Decomposition (SVD) to analyze dynamic
information of the snapshot matrix, which is generated from the data xk over time tk.

Mostly, nonlinear dynamical systems are modeled as given by (3), where data mea-
surement is sampled at time tk.

xk+1 = F (xk); k = 1, 2, . . . ,m (3)

yk = g(xk)

Where F is the discrete-time flow map of the dynamics and g is the measurement of the
system.

We are assuming that all state variables are measured in the most applications of DMD,
so that: yk = xk. The DMD can generate for the system (3), the following global linear
dynamic model:

xk+1 = Axk (4)

The solution of (4) is given by:
xk = ΦΛkb (5)

Where Φ and Λ are eigenvectors and eigenvalues of the matrix A respectively, b are
coefficients of the initial condition x1 in the eigenvector basis, so that x1 = Φb, (for
more details, the reader is referred to [10]). The DMD algorithm produces the reduced
eigen-decomposition (5) of the matrix A so the least-square (6), should be minimized for
k = 1, 2, 3 . . .m− 1.

‖xk+1 −Axk‖2 (6)

We can arrange the m snapshots in two big data matrices X and X ′ given by (7) and (8)
respectively, where X ′ is just the shift of X in time by one sample.

X =

 | | | |
x1 x2 x3 ... xm−1
| | | |

 (7)

X ′ =

 | | |
x2 x3 ... xm
| | |

 (8)
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Data of (8) are related to data of (7) as follows:

X ′ ≈ AX (9)

So, the matrix A is given by:
A ≈ X ′X† (10)

Where † is the Moore-Penrose pseudo-inverse. The solution (10) should minimize the
error given by:

‖X ′ −AX‖F (11)

Where ‖.‖F is the Frobenius norm. When we are dealing with large scale and high di-
mensional systems as the ADM1, the matrix A might be ungainly to analyze directly, so
the DMD algorithm generates a small low rank matrix, Ã defined as the reduced eigen-
decomposition of the matrix A in terms of the Proper Orthogonal Decomposition (POD)
projection [11]. The DMD algorithm follows the steps given thereafter [8, 9]:

1. The SVD of the data matrix X:

X ≈ UΣV ∗ (12)

U are the POD modes, V are the right singular vectors, Σ is the singular values
matrix.

2. The A matrix can be calculated from (10) as follows:

A = X ′V Σ−1U∗ (13)

Where V Σ−1U∗ = X† .
Often, A is very hard to compute, a reduced matrix Ã is calculated as follows:

Ã = U∗AU = U∗X ′V Σ−1 (14)

Thus, we have a low-dimensional linear model of the dynamical system on POD
coordinates given by:

x̃k+1 = Ãx̃k (15)

To reconstruct the high-dimensional state xk, we can use the formula:

xk = Ux̃k

3. The eigen-decompositon of the matrix Ã is calculated as follows:

ÃW = WΛ (16)

Where W and Λ are the eigenvectors and the eigenvalues of the matrix Ã respec-
tively.

4. Finally, the DMD modes are given by the columns of the matrix Φ:

Φ = X ′V Σ−1W. (17)

We can use the formula below to predict states on a small horizon in the future by
running the eigenvalues Λt forward in time with the help of DMD modes (Φ) and
their amplitudes (b0):

x̃(k∆t) = ΦΛtb0
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4. Result and discussion
In this section, the simulator BSM2 is running in MATLAB as a virtual process of

AD, in order to generate snapshots of data, over a simulation period of 180 days. Since
ADM1 has 35 states variables, the snapshot of data contains 35 elements. The sampling
time is taken equal to 1 day, so we have finally 180 measurements available for the DMD
algorithm. Data matrices are represented as follows by (18),(19) and (20):

xk =


x(x1, tk)
x(x2, tk)

.

.

.
x(x35, tk)

 (18)

X =

 | | | |
x1 x2 x3 ... x180−1
| | | |

 (19)

X ′ =

 | | |
x2 x3 ... x180
| | |

 (20)

Each column xk , of the matrix X represents data measurement of 35 variables of ADM1
model at time tk, k = 1...179 (no data for t180). So, size of X is (35*179). Using MAT-
LAB, we applied the DMD algorithm proposed in [8]. After applying the SVD decomposi-
tion to our data matrix X , we inspect the sigma matrix Σ given in Table.1 which, contains
singular values of the system ADM1. Now, we must keep only the singular values, which
correspond to the wanted reduced order of the global linear model. The remained singular
values must be truncated, because they correspond to the dynamics which are not dom-
inant for the global system behavior. We decided to keep only 7 modes as illustrated in
Table.1 by red color.

σi 1 2 3 4 5 6 7 8 9 ... 35

1 343.3 0 0 0 0 0 0 0 0 · · · 0
2 0 16.9 0 0 0 0 0 0 0 · · · 0
3 0 0 1.29 0 0 0 0 0 0 · · · 0
4 0 0 0 0.42 0 0 0 0 0 · · · 0
5 0 0 0 0 0.07 0 0 0 0 · · · 0
6 0 0 0 0 0 0.015 0 0 0 · · · 0
7 0 0 0 0 0 0 0.006 0 0 · · · 0
8 0 0 0 0 0 0 0 0.0025 0 · · · 0
9 0 0 0 0 0 0 0 0 0.0017 · · · 0
...

...
...

...
...

...
...

...
...

...
. . . 0

35 0 0 0 0 0 0 0 0 0 0 0

Table 1 – The matrix Sigma Σ, where singular values are reported in the diagonal and,
where the 7th order is the truncation target.
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The good advantage of DMD is that we can get a linear global model with the abil-
ity to choose the linear order approximation that we want. Thanks to the DMD method,
the ADM1 model is reduced from 35 states to only 7 states, which are corresponding to
dominant dynamics of the AD process. To check that we have rightly chosen the domi-
nant modes in the reduced linear model, we recovered the original data matrix X of the
ADM1 model over 180 days (six months of experiment). For illustration of the useful-
ness of the method, we represent on Figures 3, 4, 5 and 6, data of only four original state
variables of ADM1, compared to data which are recovered from the reduced model, using
the DMD algorithm. Comparison was done for the first six months (0...180 days), where
measurements were taken and, for the latest six months (181...360 days) where no data are
available. These preliminary results are very satisfying (for other variables, we have got
good result,too). The reduced linear model, can be used for process control purposes. This
task will be one of our perspectives, when applying DMD with control.

Figure 3 – Concentration of Soluble Inert SI
Figure 4 – Concentration of Soluble

Inorganic Carbon SIC

Figure 5 – Concentration of Particulate
Sugar Xsu

Figure 6 – Concentration of Soluble
Methane Sch4

5. Conclusion
In this paper, a dimensionality reduction method called DMD was presented and ap-

plied to deduce a simple linear model from the complex system ADM1 of 35 state vari-
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ables. A global linear reduced model was obtained with only 7 state variables, which
correspond to the dominant dynamics of the ADM1. Conversely, initial state variables of
ADM1 were recovered with the help of the solution from the linear reduced model. Per-
spectives of this work include i) using the DMD method to elaborate control laws for the
process, based on its simple linear model and ii) estimate future states.
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