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ABSTRACT. In this work, we propose a mathematical pathogen-host model which focused on the
epidemiological cycle of banana black leaf streak disease and which takes into account control strate-
gies to reduce the spores production ,this mainly thanks to an differential equations system with time
delay in wich, the host dynamics is coupled to that of the fungus responsible for the disease. By
using optimal control theory, we show that an optimal control exists for this problem and Pontryagin’s
maximum principle is used to characterize an optimal control. Numerical simulations are provided to
illustrate our results.

RÉSUMÉ. Dans ce travail, nous proposons un modèle mathématiques hôte-pathogène axé sur le
cycle épidémiologique de la maladie des raies noires du bananier et prenant en compte les stratégies
de contrôle pour réduire la production des spores, ceci à partir d’un système d’équations différen-
tielles avec retard dans lequel la dynamique de la plante hôte est couplé avec celle du champignon
responsable de la maladie. En utilisant la théorie du contrôle optimal, nous montrons qu’un contrôle
optimal existe pour ce problème et le principe du maximum de Pontryagin est utilisé pour caractériser
ce contrôle optimal. Des simulations numériques sont faites pour illustrer nos résultats.

KEYWORDS : Mathematical modelling, black leaf streak disease, optimal control, sexual reproduc-
tion, asexual reproduction, delay

MOTS-CLÉS : Modélisation mathématiques, Maladie des raies noires, contrôle optimal, reproduction
sexuée, reproduction asexuée, retard
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1. Introduction
Banana is grown in more than 120 countries around the world, primarily in the trop-

ical, rain-fed regions of Africa, Asia and Latin America, where there is very important
in the food security of more than 400 million people and constitute a employment and
income source for local populations[11]. However, both banana and banana-plantain cul-
tures are hampered by plant parasitic nematodes, insect pests and foliar fungi(IRAD).
Black sigatoka disease also called black leaf streak disease (BLSD) is caused by a pathogen
fungi , Mycosphaeralla fijiensis, which is the most costly and damaging banana leaf dis-
ease worldwide([1]). BLSD causes significant decrease of photosynthetic surface by a
general drying of the leaf system resulting the loss production of ranging from 20 to more
than 50%[2].
Mycosphaerella fijiensis Morelet which reproduces sexually and asexually. Ascospores
are the product of sexual reproduction, while conidia are produced through asexual re-
production and these spores are responsible for the spread of the disease. This fungus
performs its entire life cycle on the banana tree and their disease cycle consists of four
distinct stages that include spore germination, penetration of the host, symptom develop-
ment and spore production.([1])
The susceptibility of the crop necessitates the cultural practices and use of multiple fungi-
cides at relatively high frequencies. Such applications are potentially detrimental, not
only to the environment, but also to those who live and work in areas in which banana
is treated to control the disease([1]). In this paper, we propose a mathematical pathogen-
host model which focused on the epidemiological cycle of the disease and which takes
into account control strategies to reduce the spores production.

2. The model formulation
We formulate an optimal control pathogen host model for black sigatoka disease in

order to derive optimal control strategies with minimal implementation cost. The control
function, u represent time dependent efforts made to reduce the ascospores(sexual spore)
and conidia(asexual spore) reproduction practiced on a time interval [0, T ] where T is the
cropping season duration. Known practices of control efforts include cultural practices
and treating by fungicides. We divide the host population(N) suppose constant into two
compartments using variables S and I to describe the total number of susceptible leaf
and infected leaf, respectively. On the other hand, Y and Z describe respectively the
sexual and asexual spore groups in the pathogen population. Note that the term ’leaf’ is
a shorthand for the "leaf part that a lesion occupies", so that multiple infections cannot
occur in the model.
In the Moungo region (Cameroon), the incubation times are the shorter (13-16 days)
were obtained between May and November, a period more favorable for illness, while the
longest was obtained in February (26 days)([6]), so the delay (τ ) represents the incubation
period of the disease. We assumed that, all the leaves are destroyed and the fungus also
disappears at the end of cropping season, and that the spore dispersal rate is equal to the
spore deposite rate[5].

let β and α the rate of deposit respectively sexual and asexual spore upon leaves, and
0 < p < 1 be their infectivity(we assume that conidia infectivity is equal to the ascospores
infectivity[9]), i.e. the probability that a spore in contact with a susceptible leaf succeeds
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to infect it. Let σ be the number of asexual spores produced per infected leaf per unit
time, and γ be the number of sexual spores (ascospores) produced per infected leaf per
unit time.

- Infestation function is given by p(βX + αY )
S

N
. Hence, use the fact that the

density of susceptible leaves can be deduced from the infected leaf density through the
delayed equation s(t− τ) = N − x(t− τ), where 0 < τ < T stands for the time delay,
we have the dynamics of infected leaves given by:

İ(t) = p(βX(t) + αY (t))

(
1− I(t− τ)

N

)
−mI(t)

where m is the infectious leaves mortality rate.
- The asexual spore dynamics is given by Ẏ (t) = σI(t)− βY (t) where σI(t) is

the asexual spore production function.
- Sexual spore production thus results from the interaction between two individu-

als with compatible mating types (+ and −). However, sexual spore production is condi-
tioned to the local presence of a mating partner, whose probability is (I/2)/N , assuming
a balanced mating-type ratio and the sexual sopre production function is given by

γ

2N
I2

[5]; hence the sexual spores dynamics is given by Ẋ(t) =
γ

2N
I(t)2 − βX(t).

Hence, our model is given for t ∈ [0, T ] by:



Ẋ = p(βY + αZ)

(
1− X(t− τ)

N

)
−mX

Ẋ = (1− u)
γ

2N
X2 − βY

Ż = (1− u)σX − αZ

Let us use the following variable change: x =
I

N
, y =

Y

N
and z =

Z

N
, so for t ∈ [0, T ]

our model is gigen by:
ẋ = p(βy + αz) [1− x(t− τ)]−mx
ẏ = (1− u)

γ

2
x2 − βy

ż = (1− u)σx− αz
(1)

with initial conditions y(θ) = y0 ≥ 0 , z(θ) = z0 ≥ 0 et x(θ) = ϕ(θ) ≥ 0 for θ ∈ [−τ, 0]
where ϕ ∈ C([−τ, 0],R), the Banach space of continuous functions mapping the interval
[−τ, 0] into R+ equipped with the norm ||ϕ|| = sup

−τ≤t≤0
|ϕ(t)|.

We given the parameters values in the following table.

Our problem consists in maximizing the yield at the end of the cropping season, while
controled the champignon propagation and minimizing the control cost. We propose the
following objective function:

J(u) =

∫ T

0

(u(t)2 +Bx(t))dt.

where B is the weight constants of control of the infected group.
The set of admissible controls is defined as follows

Γ = {u ∈ L1([0, T ])/0 ≤ a ≤ u ≤ b ≤ 1;∀t ∈ [0, T ]}
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Parameter Meaning value Reference
β Sexual spores deposition rate 48 per day F Hamelin and al, 2017 [5]
α Asexual spores deposition rate 2 assumed
p Sexual spores infectivity 0.01 Landry , 2015 [9]
γ Sexual spore production rate 160 per day Virginie and al, 2017 [12]
σ Asexual spore production rate 20 per day Virginie and al, 2017 [12]
m infectious mortality rate 0.04 to 0.1 assumed

Table 1: Dimensional variables and their estimated values for M. fijiensis
The problem now is to find the control u∗ satisfying J(u∗) = min

a≤u≤b
J(u)

3. Preliminary result
In this section, we establish the existence of a solution to the delay differential system

using results from R.D. Driver’s text [3].
For notational purposes, we use :

f(t,X) =

 p(βy + αz)(1− x(t− τ))−mx
(1− u)

γ

2
x2 − βy

(1− u)σx− αz


whereX =t (x, y, z). we can define a new function

Ut : [−τ, 0] −→ R
θ −→ Ut(θ) = U(t+ θ)

where U ∈ {x, y, z}.
So the cauchy problem associed on systm (1) is given by{

Ẋ(t) = F (Xt)
X0 = ϕ

where F (xt(0), yt(0), zt(0), xt(−τ)) = f(x(t), y(t), z(t), x(t− τ)).
By [3], Using the fact that the right hand side of (1) has continuous partial derivatives, we
obtain a local Lipschitz condition of F and we conclude for the existence of solution.

Now, we show that all these variables are always positive when time evolves.

Theorem 3.1. For the initial conditions (x(θ), y(θ), z(θ)) ∈ R3
+ , the solution (x(t), y(t), z(t))

of system (1) are non negative and bounded for all time t > 0.

Proof. see Appendix 1.

For u = 0; let R0 =
pσ

m
and S0 =

p(
γ

2
+ σ)2

2γm
. Let us make the following realist

assumption:
γ

2
> σ

Theorem 3.2. 1) if R0 < 1 and S0 < 1, the system (1) has only disease free
equilibrium E0.

2) if R0 < 1 and S0 > 1, the system (1) has three equlibria point: E0 and two
endemic equilibria E+ and E−.
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3) if R0 < 1 and S0 = 1, the system (1) has two equlibria point: E0 and one
endemic equilibria E∗.

4) if R0 ≥ 1, the system (1) has two equilibria: DFE E0 and unique endemic
equilibrium E.

Proof. see Appendix 2.

4. Existence of an optimal control
We note that the existence of an optimal control can be proved by using results from

Fleming and Rishel, [(theorem 4.1 pp 68-69 [4]), for this, we will check the following
properties..

1) The set of controls and corresponding state variables is non-empty.
2) The control set Γ is convex and closed.
3) The right hand side of the state system is bounded by a linear function in the

state and control.
4) The integrand of the objective functional is convex on Γ and there exist non-

negatif constants c1, c2 and β > 1 satisfying L(u(t), X(t)) ≥ c1|u|β/2 − c2.

Theorem 4.1. There exists an optimal control u∗ and a corresponding solution (x∗, y∗, z∗)
of the initial value problem (1) that minimizes the cost function J in Γ such that J(u∗) =
min
a≤u≤b

J(u).

Proof. An existence result in Lukes ([ 10], Theorem 9.2.1) for the state system (1) with
bounded coefficients on the finite interval time is used to give condition 1). By definition,
the control set Γ is convex and closed, so condition 2) is satisfied. The right hand side
of system (1) is continuous and can be written as a linear function of u with coefficients
depending on time and state. Furthermore, by Γ and theorem 3.1, all variables x, y, z and
u are bounded on [0, T ], so condition 3 hold.
For 4., the integrand functionL of the objective functional is clearly convex in the controls
since it is quadratic. Then, for c1 = 1, and β = 4, there exist c2 such that

L(t,X, u) = u2 +Bx ≥ |u|β/2 ≥ c1|u|β/2 − c2

.

5. Characterization of the optimal control
With the existence of the optimal control established, we now present the optimality

system using the Pontryagin’s minimum principle for delayed control problem from Göll-
man and al [7]. We discuss the theorem that relates to the characterization of the optimal
control. The optimality system can be used to compute candidates for optimal control. To
do this, we begin by defining a augmented Hamiltonian.
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For the adjoint variables Λ = (λ1, λ2, λ3) and penalty multipliers, wi(t), i=1,2 ; that are
attached to the control constraints; We define the augmented Hamiltonian as follows:

H(u(t), X(t), x(t− τ),Λ(t)) =
[
u(t)2 +Bx(t)

]
+ λ1(t) [p(βy(t) + αz(t))(1− x(t− τ))−mx(t)]

+λ2(t)
[
(1− u(t))

γ

2
x(t)2 − βy(t)

]
+ λ3(t) [(1− u(t))σx(t)− αz(t)]

+w1(a− u(t)) + w2(u(t)− b),

where w1 et w2 are non-negatif and satifiyng w1(a − u∗(t)) = w2(u∗(t) − b) = 0 for
optimal control u∗.

Theorem 5.1. Given optimal control u∗ and the corresponding solutions x∗, y∗, z∗ of
system (1), there exist adjoint variables λ1, λ2 and λ3 verifiyng the system:

λ̇1(t) = −B + λ1m− λ2(t)(1− u∗)
γ

2
x∗(t)− λ3(t)(1− u∗)σ

+X[t0,T−τ ](t)λ1(t+ τ)p(βy∗(t+ τ) + αz∗(t+ τ))

λ̇2(t) = −λ1(t)βp(1− x∗(t− τ)) + βλ2(t)

λ̇3(t) = −λ1(t)αp(1− x∗(t− τ)) + αλ3(t)

(2)

with transversality conditions λi(T ) = 0; i = 1, 2, 3.

Furthermore, u∗ are represented by u∗ = max{a,min{b, 1

4
x∗(γx∗λ2 + 2σλ3)}}

Proof. Using the Pontryagin’s minimum principle for delayed control problem from Göll-
man and al [7], adjoint differential equation is giving by

λ̇1(t) = − ∂H

∂x(t)
(t)−X[t0,T−τ ](t)

∂H

∂x(t− τ)
(u(t+ τ), X(t+ τ), x(t),Λ(t+ τ))

λ̇2(t) = − ∂H

∂y(t)
(u(t), X(t), x(t− τ),Λ(t))

λ̇3(t) = − ∂H

∂z(t)
(u(t), X(t), x(t− τ),Λ(t))

with traversality conditions λi(T ) = 0; i = 1, 2, 3. where X[t0,T−τ ] is the "indicatrice"
function on [t0, T − τ ], hence we obtain system(2).

Also, the optimal control u∗ can be solved from the optimality condition
∂H

∂u
= 0, that

give u∗ =
1

4
x∗(γx∗λ2 + 2σλ3) + w1 − w2.

To determine an explicit expression for the optimal control without w1 and w2 a standard
optimality technique is utilized. We consider the following three cases.

i) On the set {t : a < u∗(t) < b}, we have w1 = w2 = 0 and u∗(t) =
1

4
x∗(t)(γx∗(t)λ2(t) + 2σλ3(t)).

ii) On the set {t : u∗(t) = a}, we havew2(t) = 0. Hence a = u∗ =
1

4
x∗(γx∗λ2+

2σλ3) + w1. Therefore
1

4
x∗(γx∗λ2 + 2σλ3) ≤ a since w1(t) ≥ 0.

iii) On the set {t : u∗(t) = b}, we have w1(t) = 0. Hence b = u∗ =
1

4
x∗(γx∗λ2 +

2σλ3)− w2. Therefore
1

4
x∗(γx∗λ2 + 2σλ3) ≥ b because w2 ≥ 0.
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Thus i), ii) and iii) can resume at

u∗(t) = max{a,min{b, 1

4
x∗(t)(γx∗(t)λ2(t) + 2σλ3(t))}}

6. Numerical simulations
In this section, we present the numerical solution of our control problem and compare

it with the solution in the absence of control. We adopted the forward-backward sweep
method to solve numerically our optimal model with time delay [8]. After making an
initial guess for the control functions, we first solved the initial valued state system for-
ward in time. Then, using the same initial guess for the control functions, we solve the
adjoint system with terminal conditions backward in time. The controls are updated in
each iteration using the optimality conditions.
The parameters used in solving the optimality system are estimates of data from BLSD
as summarized in Table 1 with m = 0.08, τ = 15, a = 0 and b = 1. With this values,
the threshold give R0 = 2.5. The cropping season of banana variyng to 10 at 12 months
[13], so we take T = 365 days.

The simulations plots are given in figure1 for B = 2 (A, B, C, D) and figure(2) for
B = 5 (a, b, c, d) where We compare the cases with control (red curves) and without
control (blue curves). We observe that the control u(t) ( see (D) and d) ) reduces the
disease but its effectiveness depends of parameter B which can represent the fungicides
concentration on the leaf in the case of chemical control.
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Figure 1: Simulation for B = 2. We remark that the control is less effective because
the weight of control B on the infected leaves is law, nevertheless we can see that the
control u(t) (see D)) grows weakly up to 160 days where it reaches its maximum and
remains there up to 225 days (which corresponds to the flowering time[13]) and begins to
decrease.
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Figure 2: Simulation of system (1) with B = 5. We can remark that the control is more
effective because the weight of infected leaves is high. We can see that the control u(t)
(see d)) grows rapidly and reaches its maximum from 50 days and remains so until 230
days( which corresponds to the flowering time [13]) before starting to decrease slowly.

7. Conclusion
In this work, we have proposed a mathematical pathogen-host model with time delay

of banana black leaf streak disease which takes into account control strategies to reduce
the spores production. We have designed an optimal control problem that consists to
maximizing the yield at the end of the cropping season, while controled the champignon
propagation and minimizing the control cost we have defined. We have characterized
the optimal control using the Pontryagin’s maximum principle and we have solved nu-
merically our system. For this numerical simulations, we saw that the control reduces
the disease and its effectiveness depends of parameter B of our cost function which can
represent the constant weight of control on the infected leaf.
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Appendix 1.Proof of theorem(3.1)
The model system can be put into the matrix form X = g(X) where X = (x, y, z)T

and

g(X) =

 g1(X)
g2(X)
g3(X)

 =

 (pβy + qαz)(1− x(t− τ))−mx
(1− u)

γ

2
x2 − βy

(1− u)σx− αz

 .

We have g1(0, z, y) ≥ 0 , g2(x, 0, z) ≥ 0 and g3(x, y, 0) ≥ 0. Hence, every solution
which starts in R3

+ will remain in R3
+.

We prove now that the solutions of model system(1) are bounded. using the fact that x is
continous over the finite interval [0, T ], we conclude that x has a maximum x∗ in [0, T ].
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By equation(2) of system(1), we have ẏ(t) ≤ γx∗

2
−βy(t) which implies that y(t) ≤ x∗γ

2β

and the same by eqyation(3) of system(1), we deduce that z(t) ≤ σx∗

α
, therefore x, y and

z are bounded.

Appendix 2.Proof of theorem(3.2)
For u = 0 and p = q, the equilibria of system(1) are the solutions of system:

p(βy + αz)(1− x)−mx = 0 (1)
γ

2
x2 − βy = 0 (2)

σx− αz = 0 (3)

.
From (2) and (3), whe have y =

γ

2
x2 and z =

σ

α
x. Introduce in (1), we obtain

x = 0 or
pγ

2
x2 − p(γ

2
− σ)x+m− pσ = 0. (E)

For x = 0, we have y = z = 0 and whe obtain disease free equilibrium E0 = (0, 0, 0).
If m − pσ ≤ 0 or R0 =

pσ

m
≥ 1, then using the Descarte sign ruler’s, equation (E) has

a unique positive solution x; then y =
γ

2β
x2, and z =

σ

α
x, hence endemic equilibrium

given for R0 ≥ 1.
IfR0 < 1, then the discriminant of equation (E) is given by ∆ = p2(

γ

2
+σ)2−2pγm.

Hence, if S0 > 1, i.e. ∆ > 0 then (E) has two positive solutions x+ and x− and we
obtain equilibria E+ and E− with y± =

γ

2
x2± and z± =

σ

α
x±. Finally if S0 = 1 that

implies ∆ = 0, (E) has a unique positive solution x∗ and we have equilibrium E∗ with
y∗ =

γ

2
x∗2 and z∗ =

σ

α
x∗.
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