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RÉSUMÉ. Cet article étudie le problème d'identi�cation de points sources via l'équation

fractionnaire de di�usion, à partir d'une seule mesure des données de Cauchy sur la fron-

tière accessible. Un résultat d'unicité des points sources est donné et un résultat local de

stabilité Lipschitzienne est établi. Pour résoudre le problème d'identi�cation des positions

et des intensités des points sources à partir de telles observations, un procédé algébrique

non itérative basé sur la fonctionnelle écart à la réciprocité est proposé.

ABSTRACT. This article investigates the identi�cation of point sources in time-fractional

di�usion equations, by performing a single measurement of the Cauchy data on the acces-

sible boundary. The main results of this work consist in giving an identi�ability result and

establishing a local Lipschitz stability result. To solve the inverse problem of identifying

fractional sources from such observations, a non-iterative algebraic method based on the

Reciprocity Gap functional is proposed.

MOTS-CLÉS: Problème inverse, équation fractionnaire de di�usion, Points sources,

Identi�abilité, Stabilité, écart à la réciprocité.
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1 Introduction

The main purpose of this paper is the identi�cation of source term F that represents the

number, the positions and the intensities of monopolar sources located in an open bounded

domain Ω ⊂ Rd, d = 2, 3, and with smooth regular boundary Σ. The corresponding

forward problem is given by:
c
0D

α
t u−∆u = F in ΩT ,

u(x, 0) = 0 x ∈ Ω,

u = f on ΣT ,

(1.1)
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where c
0D

α
t represents the Caputo fractional derivatives of order α de�ned by [19, 26]

aD
α
t g(t) :=

dn

dtn
aI

n−α
t g(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1g(s) ds, (1.2)

and

tD
α
b g(t) := (−1)n

dn

dtn
tI
n−α
b g(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

(s− t)n−α−1g(s) ds (1.3)

where

aI
α
t g(t) :=

1

Γ(α)

∫ t

a

(t− s)α−1g(s) ds, (1.4)

and

tI
α
b g(t) :=

1

Γ(α)

∫ b

t

(s− t)α−1g(s) ds, (1.5)

f ∈ L2(ΣT ) and F (x, t) is the source term that have the following form:

F (x, t) =
m∑
j=1

λj(t) δSj
(x), (1.6)

λj(t) :=


βj > 0, t ∈ [0, T )

0, t ≥ T

(1.7)

where m ∈ N, Sj ∈ Ω, and λj(t), j = 1, . . . ,m, represent respectively the number, the

locations, and the intensities of the monopolar sources inactive after the �nite time T > 0

which represents the time of observation. We denote by ΩT := Ω× (0, T ) the space time

domain, and ΣT := Σ× (0, T ) its lateral boundary.

For 0 < α < 1, equation (1.1) is called a fractional di�usion equation, and it is called a

fractional di�usion-wave equation in the case when 1 < α < 2. Note that if α = 0, α = 1

and α = 2, the equation (1.1) represents the sources identi�cation via the Helmholtz

equation, the heat equation, and the wave equation which are studied by many authors

[4, 12, 14, 20, 21]. In this paper, we are interested mainly in the fractional di�usion case

(we restrict the order α to the case 0 < α < 1).

The fractional equation is one of tools for modeling several atypical phenomena in na-

ture and in the theory of complex systems. The fractional di�usion equation has been

introduced in physics to describe di�usions in media with fractal geometry see [25], to
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show anomalous di�usion in a highly heterogeneous aquifer see [1]. Metzler and Klafter

[22] proved that a fractional di�usion equation governs a non-Markovian di�usion process

with a memory. Ginoaet et al in [17] presented a fractional di�usion equation describing

relaxation phenomena in complex viscoelastic materials.

The main motivation of this work concerns the inverse problem of identifying of contam-

inants sources in groundwater. There is a little work on inverse problems for fractional

di�erential equations. Murio et al in [23] introduced a regularization technique for the

approximate reconstruction of spatial and time varying source terms using the observed

solutions of the forward time fractional di�usion problems on a discrete set of points.

Nakagawa et al in [24] proposed that the solution can be uniquely determined by data

in any small subdomain over time interval. Tuan [27] presented that by taking suitable

initial distributions only �nitely many measurements on the boundary are required to re-

cover uniquely the di�usion coe�cient of a one-dimensional fractional di�usion equation.

Zhang and Xu [30] outlined that the unknown source term can also be uniquely deter-

mined by u(0, t), 0 < t < T . Wei and Zhang in [28] solve a nonlinear ill-posed problem

for identifying a Robin coe�cient in a time-fractional di�usion problem, they combine

the integral equation method and the boundary element method to obtain a simple min-

imization problem with H1 penalty terms. We remark that α involved in all the above

articles was assumed to be in the interval (0, 1), and most of the above fractional inverse

problems are involved in one-dimensional spaces. Other recent results are obtained for

the time-dependent source problem for multi-dimensional fractional di�usion equation.

Wei et al in [29] studied the direct problem, showed that the inverse problem has a unique

solution, and used the Tikhonov regularization method to solve the inverse source via an

iterative method. Liu et al established multiple logarithmic stability and proposed a �xed

point iteration for the numerical reconstruction. Wang et al gave a conditional stability

for this inverse problem and proposed two regularization methods (an integral equation

method and a standard Tikhonov regularization method) for the reconstruction of the

time-dependent source term.

In this work, equation (1.1) is supplemented by the boundary condition

∂u

∂ν
(x, t) = ϕ(x, t), (x, t) ∈ ΣT (1.8)
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where ν represents the outward unit normal vector to Σ pointed outside Ω, ϕ ∈ L2(ΣT ),

The inverse problem consists in identifying the source distribution F in the fractional

problem (1.1) from the compatible boundary data (f, ϕ).

2 Identi�ability

The �rst question we might ask for the study of this type of problem concerns the unique-

ness of the solution F of the inverse problem from the measurements of u and
∂u

∂ν
on

the boundary ΣT . To prove Theorem 2.2, we need the following lemma and we recall its

proof:

Lemma 2.1. [18] Let B be a bounded domain in Rd and v ∈ C2(B) ∩ C(B̄) satis�es

∆v + k2v = 0 in B, (2.1)

and

v = 0 on ∂B. (2.2)

Suppose that Im(k) > 0, where Im(k) represents the imaginary part of the complex wave

number k. Then v = 0 in B̄.

Proof

Multiplying both sides of (2.1) by v̄ and integrating over B give∫
B

∆vv̄ + k2

∫
B

vv̄ = 0

Green's identity and the boundary conditions of v yield

−
∫
B

|∇v|2 + k2

∫
B

|v|2 = 0 (2.3)

Now if Re(k) 6= 0 (Re(k) represents the real part of k), the imaginary part of (2.3) gives∫
B
|v|2 = 0 hence v = 0.

In the case where Re(k) = 0, since Im(k) > 0, we have∫
B

|∇v|2 + Im(k)2

∫
B

|v|2 = 0,

therefore v = 0 in B̄.

In the following theorem, we give the uniqueness result of the inverse problem.
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Theorem 2.2. (uniqueness)

Let ur, r = 1, 2 be the solution of problem (1.1) with Fr =
m(r)∑
j=1

λ
(r)
j δ

S
(r)
j

as source terms,

where

λ
(r)
j (t) :=


β

(r)
j > 0, t ∈ [0, T ),

0, t ≥ T.

(2.4)

Assume that u1|ΣT
= u2|ΣT

and
∂u1

∂ν |ΣT

=
∂u2

∂ν |ΣT

, then F1 = F2 up to a permutation.

Remark 2.3. The proof of theorem 2.2 is also valid for the problem (1.1) with a more

general source term of the following form F (x, t) =
m∑
j=1

λj(t) δSj
(x) with

λj(t) :=


βj > 0, t ∈ [0, Tj)

0, t ≥ Tj

(2.5)

where Tj is the time of activity of the source Sj, from the measurements of u and
∂u

∂ν
on

the boundary ΣT . Indeed, following the line of the prove of Theorem 2.2, if ur, r = 1, 2

are the solutions of problem (1.1) with Fr =
m(r)∑
j=1

λ
(r)
j δ

S
(r)
j

as source terms, where

λ
(r)
j (t) :=


β

(r)
j > 0, t ∈ (0, T

(r)
j ),

0, t ≥ T
(r)
j .

(2.6)

we show that S
(1)
j = S

(2)
j and β

(1)
j (1 − e−sT

(1)
j ) = β

(2)
j (1 − e−sT

(2)
j ). If we take s > 0

su�ciently large, we conclude that β
(1)
j = β

(2)
j and T

(1)
j = T

(2)
j . We will see in section 4

that the proposed method for the identi�cation of the source term F does not separately

give the intensities βj and the times Tj, which justi�es the choice (1.7) of F .

3 Stability Result

In this section, we study the continuous dependence of the unknown source term on the

measured data on the boundary ΣT , which is the crucial issue for numerical application.
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The question of stability has been the concern of several authors in di�erent contexts.

Alessandrini et al [2, 3], and Bellout et al [8] have dealt with stability for an inverse con-

ductivity problem. The notion of local Lipschitz stability which has been used by several

authors [5, 9, 10]. In many works, local Lipschitz stability results was obtained, derived

from algebraic relations, for elliptic sources identi�cation problems [6, 13, 21, 15].

In this section, we give a local Lipschitz stability result inspired from the stability result

given in [21] for the problem of identi�cation of sources via the Helmholtz equation, which

is derived from the Gâteaux di�erentiability, by establishing that the Gâteaux derivative

is not zero.

We suppose that Ω contains m monopolar sources located at Sj with respectively inten-

sities τj, j = 1, . . . ,m. We de�ne the perturbed source term F h by:

F h = −
m∑
j=1

τhj δSh
j
,

where

(τhj , S
h
j ) := (τj + h µj, Sj + h Rj), 1 ≤ j ≤ m,

{(µj, Rj), 1 ≤ j ≤ m} ⊂ R × R2,

h being su�ciently small to insure that Sj + h Rj remain in Ω. We denote by u0 and uh

the solutions of (3.1) with respectively source terms F = F 0 and F = F h. ∆u+ k2u = F in Ω
∂u

∂ν
= ϕ on Σ,

(3.1)

ϕ ∈ H−
1
2 (∂Ω) being the �ux on ∂Ω (ϕ 6= 0 on ∂Ω), k is the wave number on Ω. We set

u0|∂Ω = f , uh|∂Ω = fh.

Theorem 3.1. [21] (Local Lipschitz stability). Assume that k2 is not an eigenvalue

of −∆ with Neumann condition in the boundary. Then, lim
h→0

|fh − f |L2(∂Ω)

|h|
exists and is

strictly positive.

Now, we are ready to give the main result of this section. Assuming that the domain

Ω contains m monopolar sources S1, . . . , Sm with respectively intensities λ1(t), . . . , λm(t)

where

λj(t) :=

 βj > 0 if t ∈ (0, T )

0 if t ≥ T

6

Proceedings of CARI 2020



We denote by µ̃j the piecewise function de�ned by

µ̃j :=

 µj if t ∈ (0, T )

0 if t ≥ T

where µj ∈ R, and let τj ∈ R2 such that ‖τj‖ ≤ 1 for j = 1, . . . ,m.

We set

Φ := (λj, Sj), Φh := (λhj , S
h
j ) = (λj + hµj, Sj + hτj),

and

F h :=
m∑
j=1

λhj δSh
j
,

h 6= 0 being su�ciently small to insure that Shj remains in Ω. Let u0 and uh be the

solutions of problems (1.1)-(1.8) with respectively sources F 0 and F h, we set u0 = f and

uh = fh on ΣT . Then, our main result of stability is given in the following theorem

Theorem 3.2. (Local Lipschitz stability)

If µj 6= 0, then

lim
h→0

|fh − f |L2(ΣT )

h
6= 0.

Remark 3.3. If lim
h→0

|fh − f |L2(ΣT )

|h|
= ` ∈ R∗+ or if lim

h→0

|fh − f |L2(ΣT )

h
= ∞, then there

exists δ > 0 and c > 0 such that if |h| < δ, then |h| < c |fh − f |L2(ΣT ), which implies that

there exists c̃ > 0 such that for |h| < δ

m∑
j=1

‖Shj − Sj‖+ ‖λhj − λj‖L2(0, T ) ≤ c̃ |fh − f |L2(ΣT )

which gives the local Lipschitz stability result for the identi�cation of monopolar sources

problem. The result of the Theorem 3.2 means that one can distinguish between Φh and

Φ by measurements of the trace of u on ΣT , provided that the error in measurements is

o(h).

4 Identi�cation Process

We present in this section a quasi-explicit method to recover the point sources (1.6) from

the lateral observations
∂u

∂ν
and u on ΣT . This method is inspired from the algorithm
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given in [11, 13] for the monopolar source identi�cation via the Laplace equation in 2D

case. This algorithm is based on the reciprocity gap functional de�ned by (4.2) which has

been introduced by Bellout et al in [8] and has been formalized by Andrieux et al in [5],

who used it in numerical reconstruction procedure for the inverse planar crack problem.

To develop this algorithm we need the following result concerning integration by parts

formulas. For α > 0 and n ∈ N such that n− 1 ≤ α < n, we have [7]:∫ b

a

g(t)caD
α
t f(t) dt =

∫ b

a

f(t)tD
α
b g(t) dt+

n−1∑
j=0

[
tD

α+j−n
b g(t) · tDn−1−j

b f(t)
]b
a

(4.1)

We begin by considering the subset H0 de�ned by:

H0 = {v : (tD
α
T −∆)v = 0, in ΩT}

Let v ∈ H0, multiplying equation (1.1) by v and integrating on ΩT , by applying (4.1) in

time and the second Green's identity in the spatial variable, and using boundary condition,

the problem (1.1)-(1.8) admits the following variational formulation:

m∑
j=1

βj

∫ T

0

v(Sj, t) dt = R(u, v), (4.2)

where

R(u, v) =

∫
ΣT

(u
∂v

∂ν
− ∂u

∂ν
v)dΣT +

∫
Ω

[
tI

1−α
T v(x, t)u(x, t)

]T
0
dx (4.3)

Now, with the observation u(·, T ) made on Ω the reciprocity gap functional (4.3) is known

(if v is). The reciprocity gap (RG) in the equation (4.2) links the causes hidden in Ω to

their measurable consequences. The inverse problem consists to �nd the number, the

locations and the intensities of the sources from equation (4.2). In the following along

the lines followed in papers [11], we will show how an appropriate choice of test functions

unveils these information. The problem is reduced to the problem of determining the

parameters (m,Sj, βj) by the knowledge of the right hand side of (4.2). From now on, a

spatially two-dimensional setting is assumed, with complex polynomials used for adjoint

�elds. Associating R2 with C through x1 + ix2 = z, the following family of test functions

de�ned by:

vk(z, t) = (T − t)α−1zk ∈ H0, k ∈ N

8
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In fact, the functions vk are holomorphic, have harmonic real and imaginary parts in

spatial variable:

∆vk(·, t) = 0

and, since tD
α
T (T − t)α−1 = 0 ([19],p73), then

tD
α
Tvk(z, ·) = 0

Since tI
1−α
T (T − t)α−1 = Γ(α) see ([19],p88), then the components of the equality (4.2)

are then given by:

R(u, vk) =
Tα

α

m∑
j=1

βj σ
k
j , k ∈ N (4.4)

where

R(u, vk) =

∫
ΣT

(u
∂vk
∂ν
− ∂u

∂ν
vk)dΣT + Γ(α)

∫
Ω

u(x, T ) zkdx,

and σj denotes the a�x of the j-th source location Sj. The source reconstruction thus

consists in �nding the number of sources m, the locations σj, the intensities βj, and the

extinction times Tj of the sources Sj verifying the equality (4.4).

Let M be an upper bound of the exact number m of the unknown monopolar sources

(M ≥ m), let:

αk :=
α R(u, vk)

Tα
, k = 0, . . . .2M − 1,

µn =


αn

αn+1

...

αM+n−1

 ∈ CM , Λm =


β1

β2

...

βm

 ∈ Rm,

and the matrix

An,M =


σn1 σn2 . . . σnm

σn+1
1 σn+1

2 . . . σn+1
m

...
...

...
...

σM+n−1
1 σM+n−1

2 . . . σM+n−1
m

 ∈MM×m(C).

Following the line of the algorithm given in [11], the unknown m, σj, and βj can then be

deduced from the following lemma:

Lemma 4.1. [11]
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1. The rank of the family (µ0, µ1, . . . , µM−1) is r = m, and the vectors (µ0, µ1, . . . , µm−1)

are independent.

2. The a�xes σj of the monopolar sources Sj are the eigenvalues of the matrix T which

is de�ned by T µj = µj+1, for j = 0, . . . ,m− 1.

3. β1, . . . , βm are solutions of the linear system A0,mΛm = µ0 where A0,m is the Van-

dermonde matrix of σj.

Remark 4.2. 1. In the case where Ω contains a unique monopolar source S1, then:

β1 = α0 and σ1 =
α1

α0

.

2. In the case where Ω contains two monopolar sources S1, S2, and if (a,b) are the

components of the vector µ2 in the basis (µ0, µ1), then:

σ1 =
b+
√
b2 + 4a

2
, σ2 =

b−
√
b2 + 4a

2
,

β1 =
α1 − α0σ2

σ1 − σ2

and β2 =
α1 − α0σ1

σ2 − σ1

.

3. For α = 1, we �nd the family of test functions used in [4, 12] for monopolar source

identi�cation problem via the heat equation. For the numerical experiments of this

algorithm, we refer the reader to [4, 6, 20].

5 Conclusion

The main results of this work concern the uniqueness and the stability issue in the prob-

lem of determining the locations and intensities of monopolar sources in time-fractional

di�usion equation. The main motivation of this work concerns the inverse problem of

identifying of contaminants in media with fractal geometry or in a highly heterogeneous

aquifer. To solve the inverse problem of identifying fractional sources from such obser-

vations, a non iterative algebraic method based on the Reciprocity Gap functional was

proposed. The main issue to be explored concerns the study of the realistic situation of

incomplete boundary data (i.e. the over speci�ed data is available on a strict subset of the

boundary). One possible direction consists, as a �rst step, on reconstructing the missing

data before running the recovering algorithm.
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