
A role-based collaborative process design

on crowdsourcing systems

ABSTRACT. Crowdsourcing is a collaborative business process model, in which tasks are carried out
by a crowd. In crowdsourcing systems, there are two types of stakeholders namely, requesters who
outsources tasks, and the crowd or contributors, performing those tasks. We consider a stakeholder
as an actor or a standalone software component, evolving on a platform and having both mechanisms
of interaction with its environment and business skills. A set of stakeholders interacting in a dynamic
context for solving a problem, is a distributed collaborative system, and we term it crowsourcing sys-
tem. In such a system, the role concept is central, because each stakeholder must have a specific
framework within which he collaborate. Traditionally, collaborative systems lose flexibility if their de-
sign is role-based, because only static role description mechanisms based on intuitive concepts are
available. We propose in this paper, an improvement consisting of four things: (1)defining clearly what
an outsourceable task or crowd task is, (2)specifying roles clearly and rigorously, while ensuring flex-
ibility for collaboration, (3)providing role switching mechanisms and, (4) providing an abstract basis,
for crowdsourcing system design and workflow monitoring and checking mechanisms, for potential
activities, dynamically carried out by a system.

RÉSUMÉ. Le crowdsourcing est un modèle de processus métier collaboratif, dans lequel les tâches
sont externalisées. Dans ces systèmes, on distingue deux types d’intervenants: les demandeurs qui
externalisent des tâches et la foule ou contributeurs qui effectuent ces tâches. Nous considérons un
intervenant à la fois comme un acteur et un composant logiciel autonome, évoluant sur une plate-
forme, disposant de mécanismes d’interaction avec son environnement et de compétences métiers.
Un ensemble d’intervenants interagissant dans un contexte dynamique pour résoudre un problème,
est un système collaboratif distribué,désigné par système de crowdsourcing. Dans un tel système, le
concept de rôle est central, car chaque intervenant doit disposer d’un cadre spécifique dans lequel
il collabore. Traditionnellement, les systèmes collaboratifs perdent en flexibilité si leur conception est
rôle-centrée, car seuls les mécanismes statiques de description de rôles, basés sur des concepts intu-
itifs sont disponibles. Nous proposons dans cet article, une amélioration consistant en quatre choses:
(1)définir clairement ce qu’est une tâche externalisable, (2)spécifier les rôles clairement et rigoureuse-
ment, tout en assurant la flexibilité de la collaboration, (3) fournir des mécanismes de changement
de rôle et, (4) fournir une base abstraite, pour la conception de systèmes de crowdsourcing et les
mécanismes de monitoring et de vérification de workflows, pour les activités menées dynamiquement
par un système.

KEYWORDS : Role-based approach, Dynamic workflow, Separation of concerns, SOD, Interface of
role, Crowdsourcing Systems, Distributed collaborative systems, Guarded attribute grammar.

MOTS-CLÉS : Approche rôle-centrée, workflows dynamiques, séparation de préoccupations, SOD,
interface de rôle, systèmes de crowdsourcing, systèmes collaboratifs distribués, GAG.

Proceedings of CARI 2020
Bruce Watson, Eric Badouel, Oumar Niang, Eds.

Ecole Polytechnique de Thiès, Sénégal
October 2020

1. Introduction
Crowdsourcing concept, introduced by Jeff Howe [4], is a collaborative business pro-

cess model, in which tasks are carried out by a crowd. Simply, an organization can request
an online community for a voluntary accomplishment of a task, according to what both
parties have a mutual benefit. In a crowdsourcing system, organizational objectives are
top-down, while creative activity is bottom-up organized; we therefore say crowdsourcing
is a mixed mode organized process [3]. Crowdsourcing processes are based on three pil-
lars, namely: requester, crowd and crowd task [5]. Requester is a natural or legal person,
who requests the power and wisdom of the crowd, for the performance of a given service.
The requester, among other things, can encourage contributors by gratification or social
motivation (public recognition), outsource tasks, check the compliance of results with
predefined standards and finally ensure confidentiality on contributors data. Crowd is a
community of contributors, taking part in a crowdsourcing activity, whose characteristics
are: diversity (variety of skills,spatiality,...), anonymity, importance, completeness or ad-
equacy. Crowd task is an activity in which the crowd participates. It can be a large-scale
data collection, a co-creation task, or an innovation task. Characteristics of a crowd task
are: modularity, complexity, solvability, automaticity, contributor-centric. Crowd skills
orchestration, consists of distributing tasks to contributors, aggregating results and con-
tinuing the process based on the partial results obtained. According to task complexity,
acceptance of the result and gratification granted criteria, there are mainly 3 strategies
for orchestrating crowd services [6, 7]: market or strategy for large scale micro-tasking;
contest or strategy for co-creativity, auction or strategy for innovation.

A crowdsourcing system is an environment, where a crowdsourcing process is de-
ployed; it integrates practices of business process modeling, inspired by service-oriented
architecture (SOA) moreover, service calls may not be hierarchically organized; it es-
tablishes connection between crowd, individual actors and machines. It allows services
composition by assembling a suite of small specialized independent services, offering
respectively modular decomposition basis for services, an architecture organized around
business skills, focusing on product but not the project. Communication here is either
Restful, SOAP like or by messages through channels; governance and data management
are decentralized. Defining properly a stakeholder requires specifying two things: (i)
its functional goal or business skills, i.e interface (services he requires and services he
provides) and business rules (functionalities targeted by the stakeholder); (ii) its infras-
tructure mechanisms or intrinsic skills i.e storage for persistence, communication mecha-
nisms, sensing tools, etc [15]. In this work our interest is crowdsourcing processes design
for large scale micro-tasking. We consider a crowdsourcing system, as a set of indepen-
dent stakeholders providing precise services. Stakeholder infrastructure is thus perceived
as an actor, while its functional goal is a role. In fact, in such a system, each actor can be
assigned several roles and several actors could play one instance of role. Actors may not
have same intrinsic skills, and several occurrences of a role could exist at the same time in
the system. Considering all role in a given context of a system, we get a formal reasoning
basis for business goals of the whole system. As crowdsourcing system use case, con-
sider a city participatory management case [16], with processes depict on figure 2, where
citizens (BOB, JANE, ALICE,etc.) via the urban information system (URBANIS), provide
information on the state of city roads and determine which ones to maintain as a priority.
Cleaning is done (by CLEANING_CO) on the targeted roads, while municipal executive

Proceedings of CARI 2020

(MUNICIPALEXECUTIVE) contracts with a company (ROAD_CO) in order to carry out
the work.

Figure 1 – A crowdsourced road maintenance activity

Role concept is central in any collaborative system, as each actor must have a clear
framework within which he collaborate. A role specifies both what the system expects
from actors, but also what actors expects from the system; thus avoiding that an actor be
overwhelmed by information (or tasks) not necessary. Traditionally, collaborative systems
lose flexibility as soon as their design is role-based, because only static role description
mechanisms, based on intuitive concepts, are available [2], and certainly, a dynamic con-
text of collaboration, further complicates a design of such systems, since entities involved,
evolve over time in number and in skills. An improvement could be to provide four things:
(1)define clearly what an outsourceable task or crowd task is, (2)specify roles clearly and
rigorously, while ensuring flexibility for collaboration, (3)provide role switching mecha-
nisms and, (4) provide an abstract basis, for crowdsourcing system design and workflow
monitoring and checking mechanisms. This design approach implies a rigorous definition
in advance, of the set of roles and the relationships between them, necessary to describe
the functioning of a target domain. Role being a particular concern in the system. In
fact, a role-based design approach is similar to a separation of concern technique [1, 11],
applied to business process design. It is implemented by specifying activities defining
process’s steps, as well as flows describing coordination of these activities, as it may be
done with BPMN orchestration or UML collaboration or activities diagrams.

2. Role & role interface modeling and basic mechanisms
Common definitions and terminologies - a role type is the perception one actor has of
another actor [13]. A role type is specified uniquely, and an actor plays at a given time
a role specified by a role type. A role is therefore defined as one of the instances of a
given role type, played by an actor. It may not always be easy to differentiate between
a role and an actor. For instance, consider the MAYOR and CSOFFICER entities, as parts

A role-based collaborative process design
on crowdsourcing systems

of collaboration within a process of civil status certificate issuing at appendix A1. Being
able to distinguish between these entities, which is role type (or simply role) and which
is actor, can be rather complex.The sharp distinction between an actor and a role type is
based on both concepts of foundation and semantic rigidity [14]. An entity is considered
to be founded, if its specification implies a dependency or relationship with another entity.
Rather it is semantically rigid, if its identity depends on certain characteristics, and can
not exist without them. Thus, it will be said that MAYOR is unfounded and semantically
rigid (and therefore MAYOR is an actor), whereas CSOFFICER is founded and semanti-
cally non-rigid (CSOFFICER is a role); in other words, a MAYOR plays the CSOFFICER
role. Hence an actor is unfounded and semantically rigid, while a role is founded and
semantically non-rigid.

Role and crowdsourcing grammatical tasking model - In this work we will consider,
role type and role as equivalents, simply called role. A role specifies the set of actions a
given actor can take in the system.

Definition 2.1 A role r is given by a couple (G, R) where G is a guarded attribute gram-
mar (GAG)1 [10] specifying role r business skills, and R it’s associated interface of role.

Business skills are expressed as grammar production rules (or business rules), describ-
ing job decomposition, in the form

s0 → T0· · ·Tm s1 · · · sn s0 · · · sp (1)

where s0 is a defined service, s1 · · · sn are used services and T0· · ·Tm are actor’s intrin-
sic skills, finally s0 · · · sp are crowd tasks. According to this rule, to supply service s0,
services s1 · · · sn and s0 · · · sp must be achieved and skills T0· · ·Tm are needed by actor
playing that role. Within the role and considering business rules, services defined but not
used, are called provided services, those used but not defined are required services, lastly
services defined and used are internal services. Crowd tasks are defined by business rules
like si → T0· · ·Tm (0 ≤ i ≤ p) i.e they are type of services requiring only actors in-
trinsic skills, to be carried out and so, they are autonomous services. Consider a business
rule s0 → T0· · ·Tm one may ask the difference between services s0 and s0. In fact s0
is a potentially outsourceable task, it can be defined and used in the same role (or used
by another role); rather s0 is an outsourced task, so it is only defined in an autonomous
role, term crowd role, and only used by a requester role. By convention, a crowd role
only define outsourced tasks, and we say a crowd role supply only crowd services. For
instance, if we reconsider the crowdsourcing system described on figure 2, Any SENSOR,
can snap an object, in a predefined context (state of the object) and (geographic) location
(clSnap) on the one hand or quite simply according to the circumstances of the moment
(snap), following business skills expressed by business rules in (2).

clSnap → CONTEXT LOCATION SNAP
snap → SNAP (2)

1. As the goal is to describe processes, we are not yet interested with attributes in guarded attribute
grammars.

Proceedings of CARI 2020

A CITIZEN according to business skills in rule (3), can tag a picture and assess object,
in both cases by inputting some data.

tagP icture → INPUT

assessObject → INPUT (3)

Lastly according to rule (4), an IS i.e information system is responsible of data collec-
tion, selecting targeted road for maintenance, and sending some alerts (rules are not yet
defined).

selectRoad → clSnap snap tagP icture
alert → ε (4)

Interface of role - an interface of role [8, 9] is some abstraction of GAG G associated
to a role, specifying what services are provided, which external services are required to
carry them out and an over-approximation of dependencies between required and pro-
vided services termed potential dependencies. Interface disregards internal tasks. See [9]
for interfaces derivation from a GAG.

Definition 2.2 Let Ω a fixed set of services. An interface (•R,R,R•) consist of a fi-
nite binary relation R ⊆ Ω × Ω of disjoint sub-sets •R and R• from Ω, such that •R =
R−1(Ω) = {A ∈ Ω | ∃B ∈ Ω (A,B) ∈ R} andR• ⊇ R(Ω) = {B ∈ Ω |A ∈ Ω (A,B) ∈ R}.

Set R• represents services provided (or defined) by the interface and •R is the set of
required (or used) services. Relation (A,B) ∈ R indicates that service B potentially
depends upon service A. Thus A ∈ R• \ R(Ω) is a service provided by the interface
that requires no external services. An interface is closed (or autonomous) if relation R
(and therefore also •R) is empty. Thus, a closed interface is given by all services it
(autonomously) provides.

•IS =
{
clSnap, snap, tagP icture

}
IS =

{
(clSnap, selectRoad), (snap, selectRoad), (tagP icture, selectRoad), (_, alert)

}
IS• = {selectRoad, alert}

(5)
An interface provide several basic operations [8, 9] as:

Restriction (�): LetO ⊆ Ω a subset of services. A restriction of interfaceR toO denoted
R � O is given by R � O = {(A,B) ∈ R |B ∈ O} With (R � O)• = O ∩ R•
and •(R � O) = R−1(O ∩R•) respectively. Considering a role r interfaced by R,
and a subset of servicesO, the restriction operation reconfigures role r so that, only
its provided services elements of O are enabled; useful when just some skills of a
multi-skilled role are needed.

Cascade composition test (ooo): Let two roles R1 and R2; cascade composition of those
roles holds iff R•1 ∩ •R2 = ∅ ∧ •R1 ∩R•2 6= ∅. We denote R1 oooR2 their cascade
product test (or R2 nnn R1 since this operation is commutative). When cascade
composition holds, the resulting role required services set is (•R1 \R•2)∪ •R2, and
provided services set is R•1 ∪R•2.

A role-based collaborative process design
on crowdsourcing systems

Direct Product(×) Let R1 and R2 two composable role interfaces. If R•1∩•R2 = ∅ and
R•2 ∩ •R1 = ∅ , the composition is the product (direct) of R1 and R2, denoted by
R1 × R2. Note that R1 × R2 = R1 ∪ R1 and so •(R1 × R2) = •R1 ∪ •R2 and
(R1 ×R2)• = R•1 ∪R•2.

3. Collaborations and collaboration schemes
In a targeted domain, a context of collaboration is the set of roles available instantly for

the realization of some activities. A context of collaboration is dynamic, i.e roles involved
vary over time. For instance, we will consider the context on Figure 3 Appendix A4, as
a running collaborative context, for the next parts of this work. We talk of collaboration
between two roles, when there is a service dependency between them. This dependency
can be direct, in which case it is a direct collaboration; likewise, it can be indirect being
an indirect collaboration.

Definition 3.1 Two roles r1 = (G1, R1) and r2 = (G2, R2) are in a direct collaboration
iff R1oooR2 holds. We denote (•R1∩R•2, r2, r1) that collaboration, labeled by •R1∩R•2,
the set of services for which r1 and r2 collaborate; r1 being the services requester, while
r2 is the provider of those services. Thus r1 and r2 will be in an indirect collaboration iff
∃rk = (Gk, Rk) such that R1 oooRk oooR2 holds.

Potential direct collaborations of a role - a potential direct collaborations of a role, is a
graph showing all potential services providers for that role in a collaborative context. Let
r0 be a given role; algorithm 1 (Appendix A2), determines potential direct collaborations
(or potential dependencies) of r0, in a context R, in which r0 is member and such that
∀ri ∈ R, ri = (Gi, Ri). Applying algorithm 1 on context (figure 3), will result to graph
C = {({x}, r0, r3) , ({x}, r4, r3) , ({t}, r2, r3) , ({w}, r1, r3)}.

Collaboration schemes - from any context R, a collaboration scheme or induced po-
tential dependencies graph is obtained by grouping step by step, all the potential depen-
dencies of the various roles in the context, as implemented by the algorithm 2. Apply-
ing that algorithm on the previous context R, may leads to collaboration scheme C =
{({a}, r5, r0) , ({m}, r6, r4) , ({y}, r0, r2) , ({z}, r1, r2) , ({w}, r1, r3) , ({x}, r4, r3) ,
({x}, r0, r3) , ({t}, r2, r3)}.

Potential workflow of a service - the induced workflow of a service s0, describes how
this service will be issued; it is implemented as a dependency subgraph, derived from the
induced potential dependencies graph (iPDG) of the role providing service s0. Con-
sider a predicate depend(l, s0) with l, s0 ∈ Ω, which returns true if service s0 de-
pends on the service l and false otherwise. We define function dependOn(s0,R) =
{(L, r) | L ⊂ Ω∗, r ∈ R and ∀l ∈ L depend(l, s0)} which seeks in context R, all the
roles involved in the process of providing service s0, as well as associated required ser-
vices, and returns a list of couples made up of a required services set L and the role r
requesting these services. We also let iPDG(R, ∅) � Lk = {(l0, ri, rj) | ∀(Lk, rk) ∈
dependOn(s0,R), l0 ∈ Lk and rj = rk} be a filtering made on the induced poten-
tial dependencies graph, concerning collaborations (l0, ri, rj) such as for any couple
(Lk, rk) ∈ dependOn(s0,R), rk being requester of service l0 with (l0 ∈ Lk et rj = rk).
Algorithm 3 (Appendix A2), generates the potential workflow of a given service s0, from

Proceedings of CARI 2020

a context R, having an associated induced potential dependencies graph (iPDG(R, ∅)).
For instance, the potential workflow of the service u, obtained from that algorithm in the
context of previous figure 3, is given by workflow({u},R) = { (x, r4, r3), (x, r0, r3),
(t, r2, r3), (m, r6, r4), (a, r5, r0), (y, r0, r2), (z, r1, r2)}

Factorizing a workflow - a collaboration scheme may include several alternatives in
supplying the same service, as the one of figure 4(a)-Appendix A3, where service x is
provided by roles r0 and r4 respectively. In a given context factorizing, is to be able
to transform cases such as for a role r3, requesting service x, so that we have service x
potential suppliers list; as it is shown on figure 4(b)-Appendix A3.

Definition 3.2 An F − collaboration is a triplet (•R0 ∩ R•i , {ri, · · · rk} , r0), where
r1, · · · rk are potential providers of services elements of set •R0 ∩ R•i and r0 is the re-
quester for those services (with •R0 ∩R•i = · · · = •R0 ∩R•k), for some i and j.

A factorized collaboration scheme is then a potential dependency graph, possibly
consisting of collaborations (i.e (•R0 ∩ R•1, r1, r0)), and F − collaboration ((•R0 ∩
R•i , {ri, · · · rk} , r0)) if necessary. Let P (C) ⊆ P(C) a subset of parts of set C, where
elements are grouped subsets of all identically labeled collaborations. Algorithm 4 trans-
forms a C collaborations scheme to a C′ factorized collaborations schemes.

4. Activity in collaborative context
Definition 4.1 An activity for a given service s0, in a context R, is a couple denoted
activitys0 = (s0, workflow({s0},R)), and is the process of supplying service s0, de-
scribed by workflow({s0},R).

Let us consider the process of delivering service u, given by previousworkflow({u},R).
An activity can have several occurrences of the same role (indifferently supplier or re-
quester). If two roles r0 and r1 respectively, provide the same service s0 within an ac-
tivity, then they do not necessarily use the same required services i.e. rPDG(r0,R) 6=
rPDG(r1,R).

Proposition 4.1 Two activities activitys0 and activitys1 are equivalent, and we denote
by activitys0 ≡ activitys1 , iff s0 = s1 andworkflow({s0},R) ≡ workflow({s1},R)
i.e they deliver the same service in context R, with s0, s1 ∈ Ω.

Proof 1 Consider R1 . . . Rm as pairwise composable role interfaces involved in a given
workflow({s0},R) andR

′

1 . . . R
′

n those of workflow({s1},R) respectively, withm 6=
n. Let R = omi=1Ri and R′ = oni=1Ri their respective cascade compositions. By
proposition 4.5 in [8, 9], those compositions are associative. As by hypothesis those
workflows render same services, we have s0 = s1 and s0 ∈ R• ∩ R′•, two cases can be
distinguished: whether m > n and then R′ ⊆ R, we say R′ realizes service s0 with less
business rules than R; or m < n so R ⊆ R′ and as R′, R realizes service s0 with less
business rules.

Atomicity of activities - an activity for a given service s0, is said to be atomic [1], if it
has only one occurrence of role supplier for each required service in that activity. For
example, the atomic forms of previous activity activityu are respectively: activityu0

=
(u, [(x, r0, r3), (t, r2, r3), (a, r5, r0), (y, r0, r2), (z, r1, r2)]), activityu1

= (u, [(x, r4, r3),
(t, r2, r3), (m, r6, r4), (y, r0, r2), (z, r1, r2)])

A role-based collaborative process design
on crowdsourcing systems

Definition 4.2 An activity activitys0 = (s0, workflow(s0,R)) is atomic, iff for all
(s0, ri, rj) and (s0, rk, rj) in workflow(s0,R), ri = rk.

Activity decomposition - An activity can be progressively fragmented into a set of atomic
activities. The principle of decomposition, is based on roles (concern), and states that, as
long as there are several occurrences of the same role r in an activity, this activity is
broken down into new activities containing a single role occurrence r. This principle is
repeated until all activities obtained are atomic [1]. For this, associated workflow must be
factorized; if at the end of this, F − collaborations exist, then activity is decomposable,
according to principles of algorithm 5 (Appendix A2), and figure 5 (Appendix A4).

Proposition 4.2 Consider activitys0 = (s0, workflow0(s0,R)) and activity′s0 = (s0,
workflow1(s0,R)) two activities, where activitys0 ≡ activity′s0 . activitys0 is de-
composable to activity′s0 if and only if workflow0(s0,R) 6= workflow1(s0,R) and
factorize(workflow0(s0,R)) = workflow1(s0,R)

Proof 2 As the two activities are equivalents by hypothesis, the demonstration is equiva-
lent to show that a in a workflow, several collaborations for given service, is equivalent
to an F−collaboration on the same service; and this is done by definition 3.2.

Activity Realizability - refers to the possibility of carrying out an activity, in a finite num-
ber of stages, and rendering provided service. This assumes that all necessary roles are
available instantly; we say it is a favorable context. Termination of an activity, is condi-
tioned by the fact that its workflow must contain autonomous roles as triggers. Algorithm
6 (Appendix A2), describes feasibility principles for a workflow, by applying a pattern
matching mechanism. A workflow is realizable if that algorithm returns True and its
required services queue(Serv) is empty. In case that False is returned, required service
queue contains a list of services still to be provided, for completing activity.

REMARK. — An activity activitys0 = (s0, workflow(s0,R)) is said to be quasi re-
alizable, if at least one of its atomic forms obtained by decomposition, ends; i.e there
is a C ∈ decomp(workflow(s0,R), ∅) such that realisable({s0} , C) = (True, ∅).
Similarly the activity activitys0 is said realizable, if all atomic forms end; i.e. whatever
C ∈ decomp(workflow(s0,R), ∅), realisable({s0} , C) = (True, ∅).

5. Actor of a distributed collaborative system
Definition 5.1 An actor aτ is given by a couple (Rτ ,Cτ), where Rτ is the set of potential
roles that actor can play, and Cτ is the set of constraints on those potential roles.

Let aτ = (Rτ ,Cτ) an actor, ri and rj two roles; association between actor aτ and
roles ri and rj is materialized by ri, rj ∈Rτ . We will say for instance that ri,rj are ac-
tor’s aτ potential roles. Four constraint values can be defined on actor’s potential roles
[13], namely: Dcr or nothing for no constraint; Imp (ri, rj) indicating that if actor aτ
plays role ri, then he must also play role rj ; Eqv (ri, rj) in case both Imp (ri, rj) and
Imp (rj, ri) holds; Phb (ri, rj) and so, actor aτ playing role ri, cannot play role rj .

An actor can play one or more roles, within an activity, or in several parallel activities;
then three cases of "play" relationship can be distinguished: Playing several roles in an

Proceedings of CARI 2020

activity an actor can play more than one role within an activity; provided that those roles
do not provide same services. An actor aτ playing several roles r0 and r1 respectively,
in activitys0 = (s0, [· · · , (B, r1, r2), (C, r2, r0), · · ·]), see figure 6(a), is multi-skilled in
that activity. Therefore, the different roles of aτ can be pooled into a single macro-role
r
′

0 whose interface is R0 × R1. So activity activitys0 can undergo a transformation to
become activity

′

s0 = (s0, [· · · , (B, r
′

0, r2), (C, r2, r
′

0), · · ·]), as illustrated in the figure
6(b). Competing activities an actor can contribute in several activities at the same time,
either by playing the same role each time (see figure 6 (c)), or by having different roles.
In all these cases, each of these activities is implemented individually as in case 1 above.
Crowd role played by several actors within an activity, several instances of actors with
same intrinsic skills, can play the same occurrence of a role; in a workflow, if role r is
played by several actors instances (figure 6 (d)), then any collaboration with r will be on
a crowd task, and r is a crowd role. A pattern matching implementation of play relation
between an actor and his potential roles, is given by equation 9 on Appendix A3.

6. Conclusion
This work focused on a role-based design approach, in a micro-tasking crowdsourc-

ing system context i.e those dynamic system where every actor can be assigned several
roles, can come in and go out of the system as he pleases and, several instances of actors
can play the same role occurrence at a given moment, in the system. In our approach,
we made a distinction between actor i.e infrastructure of a stakeholder and role i.e his
business skills. Considering all skills in the system at a moment, procure an abstract
basis for reasoning about business goals of the whole system. We defined a rigorous
specification method for roles some basic operations, namely collaboration and roles re-
configuration. We also provide decomposition mechanisms and workflow monitoring and
checking tools, role switching and workflow simplification mechanisms, the play rela-
tionships between an actor and his assigned roles, and the constraints between roles. This
work is a prelude to a role-based design approach, for distributed collaborative systems.
An immediate continuation is to reconsider a more complex system, as co-creative and
innovative crowdsourcing systems, i.e a context where there are no pre-established rules,
clarify conception of those type of processes, and describe interactions between actors.

7. References

[1] ARTUR CAETANO , ANTONIO RITO SILVA, JOSÉ TRIBOLET, “Business Process Decomposition
- An Approach Based on the Principle of Separation of Concerns”, Enterprise Modelling and
Information Systems Architectures, vol. 5,num. 1,2010.

[2] H. ZHU, “Role mechanisms in collaborative systems”, International Journal of Production Re-
search, Taylor & Francis, vol. 44,2006.

[3] DAREN C. BRABHAM, “Using Crowdsourcing In governement”, IBM Center for the Business of
Government,2013.

[4] JEFF HOWE, “The Rise of Crowdsourcing”, Wired Magazine, vol. 14,num. 6,2006.

[5] MAHMOOD HOSSEINI , KEITH PHALP , JACQUI TAYLOR, ALI RAIAN, “The four pillars of crowd-
sourcing: A reference model.”, Bajec, Marko and Collard, Martine and Deneckère, Rébecca.
RCIS-IEEE,2014.

A role-based collaborative process design
on crowdsourcing systems

[6] STEFANO TRANQUILLINI, FLORIAN DANIEL, PAVEL KUCHERBAEV, FABIO CASATI, “Modeling, En-
acting, and Integrating Custom Crowdsourcing Processes”, ACM Trans. Web, vol. 9,num. 2,2015.

[7] PAVEL KUCHERBAEV, FLORIAN DANIEL, STEFANO TRANQUILLINI, MAURIZIO MARCHESE, “Crowd-
sourcing Processes: A Survey of Approaches and Opportunities.”, IEEE Internet Computing,
vol. 20,num. 2,2016.

[8] ERIC BADOUEL, RODRIGUE AIMÉ DJEUMEN DJATCHA, “Interfaces of Roles in Distributed Collab-
orative Systems”, CARI 2018 - Colloque Africain sur la Recherche en Informatique et Mathéma-
tiques Appliquées,2018.

[9] ERIC BADOUEL, RODRIGUE AIMÉ DJEUMEN DJATCHA, “A Calculus of Interfaces for Guarded At-
tribute Grammars”, https //hal.inria.fr/hal-02145920/file/Interfaces.pdf:PDF,2019.

[10] ERIC BADOUEL, LOÏC HÉLOUËT, GEORGES-EDOUARD KOUAMOU, CHRISTOPHE MOR-
VAN, ROBERT NSAIBIRNI FONDZE JR, “Active Workspaces: Distributed Collaborative Sys-
tems Based on Guarded Attribute Grammars”, ACM SIGAPP Applied Computing Review,
vol. 15,num. 2,2015.

[11] KRZYSZTOF CZARNECKI, ULRICH W. EISENECKER, “Generative programming - methods, tools
and applications”, Addison-Wesley,2000.

[12] STEPHAN BÖGEL, STEFAN STIEGLITZ, CHRISTIAN MESK, “A role model-based ap-
proach for modeling collaborative processes”, Business Process Management Journal,
vol. 20,num. 4,2014.

[13] DIRK RIEHLE, THOMAS GROSS, “Role Model Based Framework Design and Integration”, SIG-
PLAN Not., vol. 33, num. 10,1998.

[14] NICOLA GUARINO, “Concepts, attributes and arbitrary relations: Some linguistic and ontological
criteria for structuring knowledge bases”, Data & Knowledge Engineering, vol. 8,num. 3,1992.

[15] EDWARDS, W. KEITH, “Policies and Roles in Collaborative Applications”, Proceedings of the
1996 ACM Conference on Computer Supported Cooperative Work. CSCW ’96, New York, NY,
USA,1996.

[16] K. BENOUARET, R. VALLIYUR-RAMALINGAM, F. CHAROY, “CrowdSC: Building Smart Cities with
Large-Scale Citizen Participation”, IEEE Internet Computing, vol. 17,num. 6,2013.

Proceedings of CARI 2020

Appendix

A1. E-administration collaboration use case
Consider an E-administration application for issuing civil status certificates, described

on figure 2. This scheme shows collaborations between roles DECLARER, SECRETARY,
CSOFFICER and JUDICIARY_AUTHORITY; roles played respectively by actors BOB, AGENT,
(MAYOR, DIPLOMAT) and PROSECUTOR as stakeholders in an issuance civil status cer-
tificate (birth, marriage, death) activity2.

Figure 2 – Microservice system civil status certificate issuance

Any DECLARER, can trigger the process of establishing a civil status certificate, by a
declaration which can be either normal (dcl) or special (sDcl), following business skills
expressed by business rules in (6).

dcl → INPUT withnessing
| INPUT hospital
| INPUT reading

sDcl → INPUT

(6)

A SECRETARY according to business skills in rule (7), is responsible of declarations
correction and transcription in related registers, whether these declarations are normal
(normAscr) or special (spAscr).

normAscr → TRANSCRIPTION dcl
spAscr → TRANSCRIPTION sDcl judgment
reading → CORRECT dcl

(7)

Lastly according to rule (8), a CSOFFICER is responsible of issuing civil status certifi-
cates and certain checks. Checks rules are not yet expressed and may be done later.

2. According to Cameroonian laws

A role-based collaborative process design
on crowdsourcing systems

csDelivrance → SIGNUP normAscr
| SIGNUP spAscr

check → ε
(8)

A2. Related algorithms

Algorithm 1: Role potential dependencies graph (rPDG) calculus

1 input: r0 = (G0, R0) , R
2 output: C //set of potential collaborations of role r0.

3 C ← ∅
4 rPDG(r0,R) =
5 forall ri in R

6 if R0 oooRi then C ∪ {(•R0 ∩R•i , ri, r0)}

Algorithm 2: Context R induced potential dependencies graph (iPDG)

1 input: R

2 R′ //roles whose rPDG have already been determined, initially empty.

3 output: C
4 R′ ← ∅
5 iPDG(R,R′) =
6 if (ri in R) and (R 6= ∅) then
7 rPDG(ri,R ∪ {R′ ∪ {ri}}) ∪ iPDG(R \ {ri},R′)
8 else iPDG(R \ {ri},R′)

Algorithm 3: Determining a potential workflow for a service

1 Inputs: Serv = ∅ ∪ {s0} ,R
2 output: C //a set of potential collaborations needed to provide the service s0.

3 workflow(Serv,R) =
4 if si in Serv then – i ∈ {1, · · · , |Serv|}
5 ns = Serv \ {si} ∪ {s | (s, r) ∈ dependOn(si,R)}
6 {iPDG(R, ∅) � Lk} ∪ workflow(ns,R, iPDG(R, ∅))
7 where (Lk, rk) ∈ dependOn(s0,R)

Proceedings of CARI 2020

Algorithm 4: Factorizing a service

1 input: C
2 output: C′

3 C′ ← ∅
4 factorize(C) =
5 forall c in P (C)
6 if |c| ==1 then //c is like {(•R0 ∩ R•1 , r1, r0)}
7 C′ ∪ c

8 else if |c| > 1 then //c is like {(•R0 ∩ R•1 , r1, r0), · · · , (
•R0 ∩ R•|c|, r|c|, r0)}

9 C′ ∪
{
(•R0 ∩R•1, {r1, · · · , r|c|}, r0) |

10 r1≤i≤|c| ∈ provider
(•R1 ∩R•|c|, c

)
and r0 == requester(c)

}
11 function provider

(
•R1 ∩ R•|c|, c

)
returns the list of service providers, labeled by elements of set •R1 ∩R•|c|

in a c collaboration set, while requester(c) checks if r0 is the requester in each case of collaboration.

Algorithm 5: Atomic decomposition of an activity’s workflow

1 input: C′ //factorized workflow of the activity .

2 output: C //set of potential atomic workflows.

3 C← ∅
4 decomp(C′,C) =
5 forall c in C′

6 if |provider(c)| == 1 then //c is like {(•R0 ∩ R•1 , {r1}, r0)}
7 decomp(C′ \ {c} , insert (c,C))

}
8 else if |provider(c)| > 1 then //c is like (•R0 ∩ R•1 , {r1, · · · , r|c|}, r0)
9 decomp(C′ \ {c} ,mdup (c,C))

}
10 insert (c,C), insert collaboration c, in the different atomic workflows of C, for which c is necessary.

mdup
({

(•R0 ∩ R•1 , {r1, · · · , r|c|}, r0)
}
,C

)
add in each atomic workflow of C, collaborations

(•R0 ∩ R•1 , r, r0) with r ∈ {r1, · · · , r|c|}, as long as these collaborations are useful, for the realization of the

service associated with that workflow.

Algorithm 6: Checking realizability of activitys0
1 input: Serv //set of required services

2 C //activity workflow

3 output: (Bool, Serv)

4 realizable(∅, _) = (True, ∅) //the workflow is realizable

5 realizable(Serv, ∅) = (False, Serv) // not realizable, Serv are required services

6 realizable(Serv, c ∈ C)
7 | Serv ∩ label(c) == ∅ =realizable(Serv ∪ req, C \ {c})
8 | Serv ∩ label(c) 6= ∅ =realizable(Serv′ ∪ req, C \ {c})
9 where

10 Serv′ = Serv � (x ∈ Serv ∧ x /∈ label(c))
11 req = dependOn(label(c), provider(c))

12 For a given collaboration c = (•Ri ∩ R•k, rk, ri), label(c) returns set •Ri ∩ R•k of services labeling that

collaboration, and provider(c) returns rk providing those services.

A role-based collaborative process design
on crowdsourcing systems

A3. Implementation of the "play" relationship

Consider three primitives play
(
aτ , {ri}1≤i≤|Rτ | , activitys0

)
{cstrk}1≤k≤N

indicat-

ing that aτ potentially can play roles {ri}1≤i≤|Rτ | in activity activitys0 , with constraints
{cstrk}1≤k≤N ; play (aτ , ri, activitys0)cstrk to express that aτ potentially can play the
roles ri in activity activitys0 , according to the constraint cstrk, with

play
(
aτ , {ri}1≤i≤|Rτ | , activitys0

)
{cstrk}1≤k≤N

=
⋃

1≤i≤|Rτ |

play (aτ , ri, activitys0)cstrk

and finally play (aτ , Ri, activitys0) expressing that aτ actually plays the role ri whose
interface isRi, in activity activitys0 . Possible implementations of the "play" relationship
while taking account of constraints on roles, are described by equations 9 given below:

play (aτ , ri, activitys0)Dcr = play (aτ , Ri, activitys0)

play (aτ , ri, activitys0)Imp(ri,rj) = play (aτ , Ri ×Rj , activitys0)

play (aτ , ri, activitys0)Eqv(ri,rj) = play (aτ , Ri ×Rj , activitys0)

or play (aτ , Rj ×Ri, activitys0)

play (aτ , ri, activitys0)Phb(ri,rj) = play (aτ , Ri, activitys0)

and not play (aτ , Rj , activitys0)

(9)

A4. Figures

Figure 3 – Running collaboration context of a system

Figure 4 – Factorizing a workflow - (a) a collaboration scheme. (b) the factorized collab-
oration scheme equivalent to the one on (a).

Proceedings of CARI 2020

(a) Process of issuing a civil status certificate by the mayor

(b) Process for the issuance of a civil status certificate by a
diplomat

Figure 5 – Decomposition of the previous activity on figure 2, into two sub-activities,
csDelivrance0 and csDelivrance1

(a) Actor aτ playing two roles (b) Workflow simplified by the direct
product of R0 and R1

(c) An actor involved in two parallel ac-
tivities

(d) Several actors playing same role r2
in an activity

Figure 6 – relation play scenarios

A role-based collaborative process design
on crowdsourcing systems

