
Horizontally Elastic Edge-Finder Algorithm for
Cumulative Resource Constraint Revisited

Sévérine Fetgo Betmbe, Clémentin Tayou Djamegni

Department of Mathematics and Computer Science
Faculty of Sciences
University of Dschang
Cameroon
severine.fetgo@gmail.com
dtayou@gmail.com

ABSTRACT. The success of the constraint programming on scheduling problems comes from the
low complexity and power of propagators. The Profile data structure recently introduced by Gingras
and Quimper in [1] when applied to the edge finder rule for cumulative resource constraint (which we
call horizontally elastic edge finder) has improved the filtering power of this rule. In this paper, the
algorithm proposed by Gingras and Quimper [1] is revisited . It is proved that the detection phase
partially use the data structure Profile and a new formulation of the horizontally elastic edge finder
rule is proposed. Similar to [1], a O(kn2) algorithm (where k ≤ n represents the number of distinct
capacities required by tasks and n the number of tasks sharing the resource) is proposed for the new
rule. Experimental results on cumulative instances of resource constrained project scheduling prob-
lems (RCPSPs) from suites benchmarks highlight that using this new algorithm reduces the number
of backtracks for a majority of instances with a marginal augmentation of the running time.

RÉSUMÉ. Le succès de la programmation par contraintes sur les problèmes d’ordonnancement vient
de la faible complexité et de la puissance des propagateurs. La structure de données Profile ré-
cemment introduite par Gingras et Quimper[1] appliquée à la règle edge finder pour la contrainte
de ressource en ordonnancement cumulatif (que nous appelons horizontally elastic edge finder) a
amélioré la puissance de filtrage de cette règle. Dans cet article, l’algorithme proposé par Gingras et
Quimper [1] est revisité. Il est prouvé que la phase de détection de cet algorithme utilise partiellement
la structure de donnée et une nouvelle reformulation de la règle "horizontally elastic edge finder" est
proposée. De manière similaire à [1], un algorithme de complexité O(kn2) (où k ≤ n représente le
nombre de différentes demandes en ressource et n le nombre de tâches partageant la ressource)
est proposé pour la nouvelle règle. Les résultats expérimentaux sur les instances fortement cumula-
tives des problèmes d’ordonnancement de projet à moyen limité (RCPSPs) de la littérature montrent
qu’en utilisant le nouvel algorithme, il y a réduction du nombre de backtracks sur la large majorité des
instances pour une faible augmentation du temps d’exécution.

KEYWORDS : Constraint programming, Cumulative scheduling, Edge finder, "Profile" data structure,
Horizontally elastic scheduling, RCPSP

MOTS-CLÉS : Programmation par contraintes, Ordonnancement cumulatif, Edge finder, Structure de
donnée "Profile", Ordonnancement horizontallement élastique, RCPSP

Proceedings of CARI 2020
Bruce Watson, Eric Badouel, Oumar Niang, Eds.

Ecole Polytechnique de Thiès, Sénégal
October 2020

1. Introduction
The CUMULATIVE [2] constraint models the problems where a limited number of tasks

can executed simultaneously. Many filtering algorithms are embedded in this constraint
among which edge-finder [3] and timetabling [4] are generally the most used. There
exists many others such as not-first/not-last [5], energetic reasoning [6]. A constraint
CUMULATIVE is used to solve the Cumulative Scheduling Problems (CuSP). It is defined
by the given of a set of tasks T to be executed on a resource of capacity C. Each task
i ∈ T is executed without interruption during pi time units and used ci ≤ C units of
resource. For a task i ∈ T , the earliest starting time esti and the latest completion time
lcti are specified. Each task i ∈ T has an energy ei = ci · pi, an earliest completion time
ecti = esti + pi and a latest starting time lsti = lcti − pi. A solution of a CuSP instance
is an assignment of valid starting time si ∈ [esti, lsti] to each task i ∈ T such that the
resource constraint is satisfied i.e.,

∀τ,
∑

i∈T, si≤τ<si+pi

ci ≤ C (1)

The inequality in (1) enforces the resource constraint. The notation energy, earliest start-
ing and latest completion time, can be extended to non-empty sets of tasks as follows:

eΩ =
∑
j∈Ω

ej , estΩ = min
j∈Ω

estj , lctΩ = max
j∈Ω

lctj . (2)

By convention, for an empty set we have : est∅ = +∞, lct∅ = −∞, and e∅ = 0.
Throughout the paper, we assume that for any task i ∈ T , ecti ≤ lcti and ci ≤ C,
otherwise the problem has no solution. We let n = |T | denotes the number of tasks, k =
|{ci, i ∈ T}| denotes the number of distinct capacity requirements. The global constraint
CUMULATIVE removes inconsistent values from the domain of starting time variables
si ∈ [esti, lsti]. Since the CuSP is a NP-Hard problem [7], it is NP-Hard to remove all
such values. Polynomial time algorithms only exist for relaxations of the problem.

In this paper, we revisit the two phases horizontally elastic edge finder algorithm pro-
posed by Gingras and Quimper [1] for cumulative resource constraint. We prove that the
detection phase of this algorithm partially uses the Profile data structure. We propose a
new formulation of the rule. A new algorithm (two phases algorithm for detection and
adjustment) for the new rule of similar complexity (O(kn2)) is proposed. Experimen-
tal results on cumulative instances of resource constrained project scheduling problems
(RCPSPs) from suites benchmarks highlight that using this new algorithm reduces the
number of backtracks for a majority of instances with a marginal augmentation of the
running time.

The rest of the paper is organized as follows. Section 2 presents useful notions used
in the paper and in Section 3, we show that the detection of the horizontally elastic edge
finder presented in [1] can be strengthened for a fully utilization of the Profile data struc-
ture and we propose a new formulation of the rule. We prove that the new formulation
subsumes the previous one and we extend the attributes of the Profile data structure to be
able in Section 4 to present a two phases detection and adjustment algorithm for the new
horizontally elastic edge finder rule. In Section 5, the empirical evaluation of the new
algorithm on cumulative instances of RCPSP is presented while Section 6 concludes the
paper.

Proceedings of CARI 2020

2. Backgrounds
In this section, we recall useful notions for the paper. After reviewing notations of

attributes used in the Profile, we provide the rule used in [1] for the detection. For more
details on the data structure see [1].

A stronger relaxation for the computation of the earliest completion time of a set of
tasks (it is NP-hard to compute the earliest completion time of a set of tasks [7]) noted
ectHΩ described in [1] consumes between 0 and ci units of resource any time and exactly
ei units of energy are consumed in the interval [esti, lcti). The Profile is initialized with
a time point of capacity C for every distinct value of est, ect and lct. A sufficiently large
time point is added to act as a sentinel. While initializing the data structure, pointers are
kept so that t.esti, t.ecti and t.lcti return the time point associated to esti, ecti, and lcti.
The algorithm ScheduleTasks computes the functions t.creq = creq(t), t.cmax = cmax(t),
t.ccons = ccons(t) and t.ov = ov(t) (the capacity required, available, consume and
the overflow at time t respectively) to schedule a set of tasks Θ on the profile P . The
interesting properties of this data structure come from the number of time points and the
linearity of algorithm ScheduleTasks.

Proposition 1 [1]
The Profile contains at most 4n+ 1 time points and the algorithm ScheduleTasks runs

in O(n) time where n is the number of tasks sharing the resource.

The algorithms proposed in [1] uses the left cut of the set T by a task j ∈ T .

Definition 1 Let j ∈ T be a task. The left cut of T by task j is the set of tasks

LCut(T, j) = {k, k ∈ T ∧ lctk ≤ lctj}.

In [1], to detect that the set of tasks Ω = LCut(T, j) precedes a task i /∈ Ω noted
LCut(T, j) l i, the algorithm checks the following rule:

ectHLCut(T,j)∪{i} > lctj ⇒ LCut(T, j) l i (old-HE-EF)

The detection proceeds by batching and detecting all precedence inO(kn2) where k ≤ n
is the number of distinct capacities required by tasks and n the number of tasks sharing
the resource. When the relation LCut(T, j) l i is detected, a O(n2) algorithm is used to
adjust the earliest start time of task i.

3. Strengthened the use of Profile in Edge finder and new
Attributes for the Profile

Consider the CuSP instance of Figure 1 where three tasks T = {a, b, c} share a re-
source of capacity 2.

When scheduling the set of tasks LCut(T, b) = {b, c}, we have enough free energy to
schedule task a before lctb = 7. Therefore, no detection is found by the algorithm of [1].
On the other hand, when task a starts at esta with non-preemption, there is no possibility
to schedule tasks c in his time window. Therefore, the precedence LCut(T, b) l a is
missed by the Gingras and Quimper’s algorithm [1]. The problem comes from the fact
that the algorithm checks whether

ectHLCut(T,b)∪{a} > lctb

Horizontally Elastic Edge-Finder for Cumulative Resource Constraint Revisited

0 2 4 6 8

ac

b
estb=1

esta,c=3 lctc=6

lctb=7

lcta=8

Figure 1. (a A CuSP problem of 3 tasks
sharing a resource of capacity C = 2.

0 2 4 6 8

a
c

b
estb=1

esta,c=3 lctc=6

lctb=7

lcta=8

Figure 2. (b) When task a is scheduled at
esta, no possibility to schedule task c in his
time window

were the non-preemption of task a is not taken into account.
The new horizontally elastic edge finder rule proposed in this paper is given by the

formula:
For all i, j ∈ T with lcti > lctj ,

ectHLCut(T,j)∪{i′} > lctj ⇒ LCut(T, j) l i (new-HE-EF)

where i′ is a task derived from task i whose parameters 〈esti′ , lcti′ , pi′ , ci′〉 are

〈esti,min(ecti, lctj),min(ecti, lctj)− esti, ci〉.

Theorem 1 The horizontally elastic edge finder rule (new-HE-EF) subsumes the old hor-
izontally elastic edge finder rule (old-HE-EF)

Proof. Since the set of tasks LCut(T, j)∪{i′} is most constrained than LCut(T, j)∪{i},
it follows that ectHLCut(T,j)∪{i′} ≥ ectHLCut(T,j)∪{i}. Therefore, all detections performed by
the rule (old-HE-EF) are also done by the rule (new-HE-EF).

In the example of Figure 1, the rule (new-HE-EF) was able to detect that {b, c} l a.
This detection was not found by the rule (old-HE-EF).

Let j be a task and c be a capacity required by a task. Before scheduling tasks of
LCut(T, j), the profile is divided into two: a upper part of capacity c and a bottom part
of capacity C − c. We extend the function ScheduleTask(LCut(T, j), C) of [1] to Sched-
uleTasks(LCut(T, j), C, c) by specifying at each time point t the overlap energy t.over,
the slack under t.sUnder and over t.sOver the line C− c accumulated through the inter-
val [0, t.time] and the contact point t.cont which represents the nearest time point were
consumption is greater than C − c and from there to other contact point, the overlap is
greater than the slack under. At the first time point t.first the values t.over, t.sUnder
and t.sOver are initialized to 0 and they are updated at any time point with the relations:

t.over = t.previuos.over + max(t.ccons − (C − c), 0) · ` (3)

t.sUnder = t.previous.sUnder + max(min(C − c, t.cmax)− t.ccons), 0) · ` (4)

t.sOver = t.previous.sOver + max(t.cmax −max(C − c, t.ccons), 0) · ` (5)

where ` = t.time− t.previous.time.

t.cont = argmin
A

t (6)

where A = {t ∈ P | t.ccons > C − c ∧ ∀t′ ∈ P with t′.time > t.time and t′.ccons >
C−c, t′.over− t.over > t′.sUnder− t.sUnder}. An illustration of the above relations
are shown in the following example.

Proceedings of CARI 2020

0 2 4 6

a
bc

d

estb=3

esta,c=0

estd=0

lctc=3

lctb=4

lcta=1

lctd=8

Figure 3. (A CuSP problem of 4 tasks shar-
ing a resource of capacity C = 2.

Consider the CuSP instance of Figure 3
where four tasks T = {a, b, c, d} share a
resource of capacity 2. When the tasks
{a, b, c} are scheduled and C − c = 1,
between the time point 0 and 3, we have
sOver(0, 3) = 0 since cmax = 1 between
1 and 3. sUnder(0, 3) = 2 since task c can
be executed till time 3 and over(0, 3) = 1.
The contact point at time point 0 is then 3
since over(0, 3) < sUnder(0, 3).

4. New Edge Finder Algorithm

4.1. Edge Finder Detection
In Algorithm 1, we iterate through the set of tasks sorted in increasing order of lct

(line 1) and we consider all the capacity required by tasks of set ∆ = {ci | i ∈ Λ} where
Λ = T \Θ and Θ = LCut(T, j) (line 2). By this way, we proceed by batching tasks of the
same capacity. The function ScheduleTasks(LCut(T, j), C, c) is used at line 3 to compute
the earliest completion time of the set Θ and when the current set of tasks is e-feasible
(line 4), the function Detection is called to detect all the tasks of ∆c = {i ∈ Λ | ci = c}
which satisfy the edge finding rule.

Algorithm 1: EdgeFinderDetection in O(kn2) time.
Input: T set of tasks sorted in non-decreasing lct.
Output: Prec precedence relation and MaxOver maximum upper overload energy at the

contact point for each task i ∈ Λ

1 forall j ∈ T with lctj < lctj+1 do
2 forall c ∈ ∆ where ∆ = {ci | i /∈ Θ} and Θ = LCut(T, j) do
3 ectH ← ScheduleTasks(Θ, C, c)

4 if ectH ≤ lctj then
5 (Prec,MaxOver)← Detection(∆c) where ∆c = {i ∈ Λ | ci = c}
6 return est′

The Detection function iterates over the set ∆c (line 1) and consider three particular
time points: t1 = t.esti.cont, t2 = t.ecti and t3 = t.lctj for each case. In the case of
line 3, (ecti ≤ lctj), we use the relation over(t1, t2) > sUnder(t1, t3) + sOver(t2, t3)
at line 4 to detect the precedence at line 5 and compute the maximum overload energy
of the upper part of the profile at the contact point of esti (line 6). In the other case,
(ecti > lctj) line 8, the relation over(t1, t3) > sUnder(t1, t3) is used at line 9 to detect
the precedence and compute MaxOver[i].

Horizontally Elastic Edge-Finder for Cumulative Resource Constraint Revisited

Algorithm 2: Detection(∆c) in O(n) time
Input: ∆c

Output: Prec[] and MaxOver[] vector of precedence and the maximum upper overload
energy after the contact point

1 forall i ∈ ∆c do
2 t1 = t.esti.cont, t2 = t.ecti, t3 = t.lctj
3 if t1.time < t2.time ∧ t2.time ≤ t3.time then
4 if over(t1, t2) > sUnder(t1, t3) + sOver(t2, t3) then
5 Prec[i]← j

6 MaxOver[i]← overlap(t1, t2)− sUnder(t1, t3)

7 Λ← Λ \ {i}
8 if t1.time < t2.time ∧ t2.time > t3.time then
9 if over(t1, t3) > sUnder(t1, t3) then

10 Prec[i]← j

11 MaxOver[i]← overlap(t1, t3)− sUnder(t1, t3)

12 Λ← Λ \ {i}

Proposition 2 Detection runs in O(n) time.

Proof. The algorithm iterates over the set ∆c of cadinality n in the worse case and the
remaining operations are made in O(1).

Proposition 3 EdgeFinderDetection runs in O(kn2) time where k is the different capac-
ities required by tasks.

Proof. For each task and for each capacity required, EdgeFinderDetection calls Sched-
uleTasks and Detection. Therefore, the complexity of EdgeFinderDetection is O(kn(n+
n) = O(kn2).

4.2. Edge Finder Adjustment
Let’s consider the CuSP instance of three tasks T = {a, b, c} sharing a resource of

capacity 2 presented in the following figure. In Algorithm 3, the vector est′ of new earliest

0 2 4 6

a b

c
esta=0 lcta=2 estb=4

lctb=5

estc=1 lctc=8

Figure 4. (A CuSP problem of 3 tasks shar-
ing a resource of capacity C = 2.

The new rule will detect {a} l c and
{a, b}lcwhile only the detection {a}lc is
made by Gingras and Quimper algorithm’s
[1]. Therefore, we cannot used the same
adjustment algorithm since it can deduced
wrong values with the detection {a, b}l c.

starting time of task is initialised with the current value of earliest starting time of tasks
(line 2). For each detection, we schedule tasks of Θ = LCut(T, j) with parameters ci for
the upper part of the profile (line 4). The function ComputeBound is then used to compute
the new earliest completion time of task i (line 5).

Proceedings of CARI 2020

Algorithm 3: EdgeFinderAdjustment(Prec[],MaxOver[]) in O(n2) time
Input: Prec[] and MaxOver[]
Output: est′i the new bounds of all tasks i ∈ T

1 forall i ∈ T do
2 est′i ← esti
3 if Prec[i] = j ∧MaxOver[i] > 0 then
4 ScheduleTasks(Θ, C, ci)

5 est′i = max(est′i,ComputeBound(i, j,MaxOver[i]))

In Algorithm 4, we iterate over the profile starting at the contact point of the esti of
task i. From that point, we consume the maximum overload energy in the upper part of
the profile (line 6) and the new bound correspond to the end of this energy.

Algorithm 4: ComputeBound(i, j,MaxOver[i]) in O(n) time
Input: i, j and MaxOver[i]
Output: est′i the new bounds of tasks i

1 t← t.esti.cont
2 maxOv ← MaxOver[i]
3 while t.next 6= null do
4 over ← t.next.over − t.over

5 if maxOv > over then
6 maxOv ← maxOv − over

7 t← t.next

8 else
9 est′i = min(t.next.time, t.time + d maxOv

t.cons−(C+ci)
e

Proposition 4 ComputeBound runs in O(n) time.

Proof. Direct consequence of Proposition 1.

Proposition 5 EdgeFinderAdjustment runs in O(n2) time.

Proof. For each task, the function ScheduleTasks and ComputeBound are called which
lead to a global complexity of O(n(n+ n)) = O(n2).

5. Experimental Results
Empirical evaluation of the different versions of the algorithm was carried out on

resource-constrained project scheduling problems (RCPSP) to compare the new algo-
rithms with the state-of-the art algorithm. A RCPSP consists of a set of resources of finite
capacities, a set of tasks of given processing times, an acyclic network of precedence con-
straints between tasks, and a horizon (a deadline for all tasks). Each task requires a fixed
amount of each resource over its execution time. The problem is to find a starting time
assignment for all tasks satisfying the precedence and resource capacity constraints, with
the least makespan (i.e., the time at which all tasks are completed) at most equal to the
horizon.

Tests were performed on benchmark suites of RCPSP known to be highly cumulative
[6]. On highly cumulative scheduling instances, many tasks can be scheduled simultane-
ously as contrary to the highly disjunctive ones. We use the libraries BL [6], Pack [10],
KSD15_D [11]. The data set BL consists of 40 instances of 20 and 25 tasks sharing three

Horizontally Elastic Edge-Finder for Cumulative Resource Constraint Revisited

resources, Pack consists of 55 instances of 15-33 tasks sharing a resource of capacity
2-5 while the set KSD15_D consists of 480 instances of 15 tasks sharing a resource of
capacity 4.

Starting with the provided horizon as an upper bound, we modeled each problem as
an instance of Constraint Satisfaction Problem (CSP); variables are starting times of tasks
and they are constrained by the precedence graph (i.e., precedence relations between pairs
of tasks were enforced with linear constraints) and resource limitations (i.e., each resource
was modeled with a single CUMULATIVE constraint [2]). We used a branch and bound
search to minimize the makespan.

The implementation was done in Java using Choco solver 4.10.1 [12]. Two filtering
algorithms for different configurations of the global constraint CUMULATIVE were con-
sidered.

1) The first CUMULATIVE propagator noted old-HE-EF (for Gingras and Quimper
horizontally elastic edge finder) is a sequence of two filtering algorithms: the O(kn2)
horizontally elastic edge finder from [1] and timetabling algorithm from [13].

2) The second propagator noted new-HE-EF is obtained when replacing in the
first propagator, the Gingras and Quimper’s algorithm [1] by the algorithm presented in
Section 4.
Static branching scheme is the best way to compare two propagators of different filtering
power. We use the lexicographic static branching scheme which consists of selecting
unscheduled tasks in lexicographic order and assign it to its lower bound. We also evaluate
our propagator on dynamic branching scheme which is a heuristic used to select tasks and
values during the resolution process. We combine the conflict-ordering search heuristic
[14] with the default search heuristic domOverWDegSearch from Choco. During the
search, the solver records conflicting tasks and at the backtrack, the last one is selected
in priority until they are all instantiated without causing any failure. When no conflicting
tasks is recorded, the heuristic domOverWDegSearch is used. Tests were performed
on Intel(R) Core(TM) i5, 1.6 GHz CPU with 4 GB memory, using a single core. Any
search taking more than 5 minutes was counted as a failure.

old-HE-EF new-HE-EF Speedup (%)
solve time backts solve time backts speedup

Static branching
BL 26 26.12 399600 27 23.22 232623 112.51
PACK 10 18.2 88853 10 22.08 74063 82.47
KSD15_D 398 0.85 7692 399 1.43 7692 59.08

Dynamic branching
BL 38 8.39 64637 38 10.01 53680 83.86
PACK 11 13.54 73554 9 25.54 101853 52.67
KSD15_D 450 0.99 7372 444 1.83 7137 54.15

Table 1. For each propagator, we report the number of instances solved (solve), the av-
erage number of backtracks (backts), the average time (time) and the average speed up
factor required to solve all instances that are commonly solved by the two propagators on
set BL, Pack, KSD15 respectively.

Proceedings of CARI 2020

0 100 200 300
0

100

200

300

(a) new-HE-EF (sec)

ol
d-

H
E

-E
F

(s
ec

)

BL

Pack

KSD15_D

0 0.5 1 1.5

·106

0

0.5

1

1.5
·106

(b) new-HE-EF (# backts)

BL

Pack

KSD15_D

0 0.5 1 1.5

·106

0

0.5

1

1.5
·106

(b) new-HE-EF (# props)

BL

Pack

KSD15_D

Figure 5. Static branching scheme: (a) Runtime old-HE-EF vs. new-HE-EF, (b) Com-
parison of the number of Backtracks old-HE-EF vs. new-HE-EF , (c) Comparison of the
number of propagation old-HE-EF vs. new-HE-EF on instances of BL, Pack and KDS15_D
where the two propagators found the best solution.

In Table 1, we notice that in static branching scheme, we do less backtracks but we
need slight time and more propagation to do so. Therefore, we perform better than the
state of the art algorithm. In dynamic branching scheme, we most of the time do less
backtracks and we need little more time and propagation to achieve it. This is due to the
type of the heuristic used.

0 100 200 300
0

100

200

300

(a) new-HE-EF (sec)

ol
d-

H
E

-E
F

(s
ec

)

BL

Pack

KSD15_D

0 0.5 1 1.5

·106

0

0.5

1

1.5
·106

(b) new-HE-EF (# backts)

BL

Pack

KSD15_D

0 0.5 1 1.5

·106

0

0.5

1

1.5
·106

(b) new-HE-EF (# props)

BL

Pack

KSD15_D

Figure 6. Dynamic branching scheme: (a) Runtime old-HE-EF vs. new-HE-EF, (b) Com-
parison of the number of Backtracks old-HE-EF vs. new-HE-EF , (c) Comparison of the
number of propagation old-HE-EF vs. new-HE-EF on instances of BL, Pack and KDS15_D
where the two propagators found the best solution.

6. Conclusion
In this paper, we revisited the two phases horizontally elastic edge finder algorithm

proposed by Gingras and Quimper [1] for cumulative resource constraint. We proved that
the detection phase partially uses the Profile data structure and proposed a new formu-
lation of the rule. A new detection algorithm of complexity O(kn2) was then presented
and combined with the O(n2) adjustment phase for an overall algorithm of complexity
O(kn2). Experimental results on highly cumulative instances of resource constrained
project scheduling problems (RCPSPs) from suites benchmarks highlight that using this
new algorithm reduces the number of backtracks with a slight increase of the running
time. Future work will focus on finding how to improve the complexity of this algorithm
from O(kn2) to O(n2) and design a branching scheme more suitable for the new rule.

Horizontally Elastic Edge-Finder for Cumulative Resource Constraint Revisited

Acknowledgments
The authors would like to thank Vincent Gingras and Claude-Guy Quimper for their

code source and Roger Kameugne for his advice and assistance.

7. References

[1] V. GINGRAS AND C.-G. QUIMPER: “Generalizing the Edge-Finder Rule for the Cumulative
Constraint.”, In Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI 2016), 3103–3109, 2016.

[2] A. AGGOUN, AND N. BELDICEANU: “Extending CHIP in order to solve complex scheduling
and placement problems”. Mathematical and Computer Modeling, vol. 17, num. 7, 57–73,
(1993).

[3] R. KAMEUGNE, L. P. FOTSO, J. SCOTT, Y. NGO-KATEU: “A Quadratic Edge-Finding Filter-
ing Algorithm for Cumulative Resource Constraints”, Constraints, vol. 19, num. 3, pp 243-269.
Springer, (2014).

[4] S. GAY, R. HARTERT, AND P. SCHAUS: “Simple and Scalable Time-Table Filtering for the
Cumulative Constraint. ” In Proceedings of the 21st International Conference on Principles
and Practice of Constraint Programming (CP 2015), 149–157, 2015.

[5] R. KAMEUGNE, AND L.P. FOTSO: “A Cumulative Not-First/Not-Last Filtering Algorithm in
O(n2 log(n))”. Indian Journal of Pure Applied Mathematics. vol. 44, num. 1, 95–115, 2013.

[6] P. BAPTISTE, C. LE PAPE, AND W. NUIJTEN: “Constraint-based scheduling: applying con-
straint programming to scheduling problems.“ Kluwer, Boston (2001).

[7] M. R. GAREY AND D. S. JOHNSON: “Computers and Intractability”, vol. 29, wh freeman.
(2002).

[8] R. KAMEUGNE, L. P. FOTSO, J. SCOTT: “A Quadratic Extended Edge-Finding Filtering Al-
gorithm for Cumulative Resource Constraints”, International Journal of Planning and Schedul-
ing. vol. 1, num. 4, pp. 264-284, (2013).

[9] R. KAMEUGNE, SEVERINE FETGO BETMBE, V. GINGRAS, Y. OUELLET AND C-G QUIM-
PER.: “Horizontally Elastic Not-First/Not-Last Filtering Algorithm For Cumulative Resource
Constraint.”, In proceeding of CPAIOR, 2018., LNCS 10848, pp. 316?332.

[10] J. CARLIER AND E. NÉRON: “On linear lower bounds for the resource constrained project
scheduling problem”, European Journal of Operational Research, vol. 149, num. 2, 314-324,
2003.

[11] O. KONÉ, C. ARTIGUES, P. LOPEZ, AND M. MONGEAU: “Event-based milp models for
resource-constrained project scheduling problems”. Computers & Operations Research, vol. 38,
num. 1, 3-13, 2011.

[12] C. PRUD’HOMME, J.-G. FAGES, AND X. LORCA: “Choco Solver Documentation ”,
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016, http://www.
choco-solver.org

[13] A. LETORT, N. BELDICEANU, AND M. CARLSSON: “ A scalable sweep algorithm for cu-
mulative constraint”, In Proceedings of the 18th International Conference on Principles and
Practice of Constraint Programming (CP 2012), 439-454, 2012.

[14] STEVEN GAY, RENAUD HARTERT, CHRISTOPHE LECOUTRE AND PIERRE SCHAUS, “Con-
flict Ordering Search for Scheduling Problems”, In Proceedings of the 21st International
Conference on Principles and Practice of Constraint Programming (CP 2015), 140-148, Cork,
Ireland, 2015.

Proceedings of CARI 2020

