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1 IntrodutionCaianiello [1℄ has suggested that the dynami behaviour of a neuron in a neuralnetwork with k-memory an be modeled by the following reurrene equation :
xi (t) = 1 nX

j=1

kX
s=1

aij (s) xj (t − s) − bi

!
, t ≥ k (1)where� i is the index of a neuron, i = 1, ..., n.� xi (t) ∈ {0, 1} is a variable representing the state of the neuron i at time t.� k is the memory length, i.e., the state of a neuron i at time t depends on thestates xj (t − 1) , ..., xj (t − k) assumed by all the neurons (j = 1, ..., n) at theprevious steps t − 1, ..., t − k (k ≥ 1).� aij (s) (1 ≤ i, j ≤ n and 1 ≤ s ≤ k) are real numbers alled the weightingoe�ients. More preisely, aij (s) represents the in�uene of the state of theneuron j at time t − s on the state assumed by the neuron i at time t.� bi is a real number alled the threshold.� 1 is the Heaviside funtion : 1 (u) = 0 if u < 0, and 1 (u) = 1 if u ≥ 0.Neural networks were introdued by M Culloh and Pitts [12℄, and are beinginvestigated in many �elds of arti�ial intelligene as a omputational paradigmalternative to the onventional Von Neumann model. Neural networks are able tosimulate any sequential mahine or Turing mahine if an in�nite number of ellsis provided. Reently, neural networks have been studied extensively as tools forsolving various problems suh as lassi�ation, speeh reognition, and image pro-essing [5℄. The �eld of apppliation of threshold funtions is large [9, 11, 5℄.Sine neural network models have also been inspired by neurophysiologial know-ledge, the theoretial results may help to broaden understanding of the omputa-tional priniples of mental proesses.The dynamis generated by Eq. (1) have been studied for some partiular one-dimensional systems :� when k = 1, one obtains a M Culloh and Pitts neural network [12℄. Someresults about the dynamial behaviour of these networks an be found in[12, 11℄.� when n = 1, one obtains a single neuron (proposed by Caianiello and De Lua[2℄) with memory that does not interat with other neurons. See [2, 3, 14℄ forsome results.There are few results in the study of evolution indued by Eq. (1). In [7℄ Golesestablished the following result :Theorem 1 [7℄. If the lass of interation matries (A (s) : s = 1, ..., k) is palindro-mi the periods T of parallel iteration with memory satis�es T |k + 1.In [15℄ Thuenté generalized the preeding result by showing that the parallel itera-tion of a network of automata N an be sequentially simulated by another network

N ′ whose loal transition funtions are the same as those of N . By implementing abinary Borrow-Save ounter, Ndoundam and Thuenté show that :Theorem 2 [13℄.There exist a Caianiello automata network of size 2n + 2 andmemory length k whih desribes a yle of length k2nk.In this work, we show some dynamial results for parallel iteration with memoryof neural network (Eq. (1)) when non-trivial regularities on oupling oe�ients aresatis�ed. We also de�ne the sequential iteration with memory of neural network andharaterize its periodi behaviour. Our approah onsists in de�ning appropriateLyapunov funtional [11℄ or algebrai invariant [10℄.2



The remainder of the paper is organized as follows : in Setion 2, some baside�nitions and preliminary results are presented. In Setion 3 we de�ne two Lya-punov funtional for parallel iteration with memory of neural network, haraterizeits periodi behaviour and bound its transient length. We also ompare this boundwith another obtained using sequential simulation of parallel iteration. In Setion4, we introdue sequential iteration with memory of neural network and study itsperiodi behaviour using an algebrai invariant.2 De�nitions and preliminary resultsA neural network N iterated with a memory of length k is de�ned by N =
(I,A (1) , ..., A (k) , b), where I = {1, ..., n} is the set of neurons indexes,A (1) , ..., A (k)are matries of interations and b = (bi : i ∈ {1, ..., n}) is the threshold vetor. Let
{x (t) ∈ {0, 1}n

: t ≥ 0} be the trajetory starting from x (0),..., x (k − 1) ; sine
{0, 1}n is �nite, this trajetory must sooner or later enounter a state that ourredpreviously - it has entered an attrator yle. The trajetory leading to the attratoris a transient. The period (T) of the attrator is the number of states in its yle,whih may be just one - a �xed point. The transient length of the trajetory is noted
τ (x (0) , ..., x (k − 1)). The transient length of the neural network is de�nes as thegreatest of transient lengths of trajetories, that is :

τ (A (1) , ..., A (k) , b) = max {τ (x (0) , ..., x (k − 1)) : x (t) ∈ {0, 1}n
, 0 ≤ t ≤ k − 1}The period and the transient length of sequenes generated are good measures ofthe omplexity of the neural network.The updates of the state values of eah neuron depends on the type of iterationassoiated to the model. The sequential iteration onsists of one by one updating theneurons in a pre-established periodi order (i1, i2, ..., in), where I = {i1, i2, ..., in}.The parallel iteration onsists of updating the value of all the neurons at the sametime.3 Parallel iteration with memoryLet us onsider the parallel iteration with memory of a �nite neural network

N = (I,A (1) , ..., A (s) , b) give by Eq. (1) ; we an assume that :
nX

j=1

kX
s=1

aij (s) uj 6= bi, ∀i ∈ I, ∀u = (u1, ..., un) ∈ {0, 1}n (2)We also assume that the set of interation matries (A (s) : s = 1, ..., k) satis�y thepalindromi ondition :
A (k + 1 − s) = A (s)t

for s = 1, ..., k (3)i.e. :
aij (k + 1 − s) = aji (s) ∀i, j ∈ {1, ..., n} , ∀s ∈ {1, ..., k} (4)Let {x (t) : t ≥ 0} be a trajetory of the parallel iteration, we de�ne the followingfuntional for t ≥ k :

E (x (t)) = −
nX

i=1

 
k−1X
s=0

xi (t − s)

 
nX

j=1

k−sX
s′=1

aij

�
s
′
�
xj

�
t − s − s

′
�!

− bi

kX
s=0

xi (t − s)

!(5)Proposition 1 If the lass of interation matries (A (s) : s = 1, ..., k) is palindro-mi, then the funtional E (x (t)) is a stritly dereasing Lyapunov funtional forthe parallel iteration with memory of neural network.3



We now give another proof of the Theorem 1 using the preeding Lyapunov fun-tional.Proof of Theorem 1. Let X = (x (0) , ..., x (T − 1)) a yle of period T . Fromthe proof of Proposition 1 we found that, E (x (0)) = ... = E (x (T − 1)) i� ∀t =
0, ..., T − 1, xi (t) = xi (t + k + 1) for all i = 1, ..., n, whih implies that τ (Xi) |k +1
∀i ∈ I. Then T |k + 1. �To study the transient phase, we will work with another Lyapunov funtionalderived from E (x (t)). De�ne :

E∗ (x (t)) = −
nP

i=1

 
k−1P
s=0

(2xi (t − s) − 1)

 
nP

j=1

k−sP
s′=1

aij (s′) (2xj (t − s − s′) − 1)

!!
+

nP
i=1

  
2bi −

nP
j=1

kP
s=1

aij (s)

!
kP

s=0

(2xi (t − s) − 1)

! (6)Proposition 2 If the lass of interation matries (A (s) : s = 1, ..., k) is palindro-mi, then the funtional E∗ (x (t)) is a stritly dereasing Lyapunov funtional forthe parallel iteration with memory of neural network .Denotes by X̄ the set of all initial onditions whih do not belong to a period oflength k + 1 :
X̄ = {x (0) ∈ {0, 1}n suh that x (0) 6= x (k + 1)}Reall that X̄ is empty i� the transient length of the neural network is null. If X̄ 6= ∅de�ne :

e = min
�
− (E (x (k + 1)) − E (x (k))) : x (0) ∈ X̄

	 (7)We note e = 0 if X̄ = 0.Proposition 3 Let {x (t) : t ≥ 0} be a trajetory ; E∗ (x (t)) is bounded by :
E

∗ (x (t)) ≥ − (k + 1)

2b −
kX

s=1

A (s) .1̄


1

−
kX

s=1

(k − s + 1) ‖A (s)‖ (8)and
E

∗ (x (t)) ≤

2b −

kX
s=1

A (s) .1̄


1

− 2k

nX
i=1

ei +

kX
s=2

(s − 1) ‖A (s)‖ (9)where :
ei = min

(����� nX
j=1

kX
s=1

aij (s) uj (s) − bi

����� : u (s) ∈ {0, 1}n
, s = 1, ..., k

) (10)and ‖A (s)‖ =
n
∑

i=1

n
∑

j=1

|aij (s)|, ‖u‖
1

=
n
∑

i=1

|ui| for any vetor u ∈ Rn, 1̄ = (1, ..., 1)
tis the 1-onstant vetor.Theorem 3 If the lass of interation matries (A (s) : s = 1, ..., k) is palindromi,then the transient length τ (A (1) , ..., A (k) , b) of parallel iteration with memory ofneural network is bounded by :

τ (A (1) , ..., A (k) , b) ≤ 1

4e

�
(k + 2)

2b −
kP

s=1

A (s) 1̄


1

+ k
kP

s=1

‖A (s)‖ − 2k
nP

i=1

ei

�
if e > 0

τ (A (1) , ..., A (k) , b) = 0 if e = 0 (11)4



For k = 1, this bound is obtained in [8℄ and a family of neural network whih attainsit is given.Remark 1. By using onstrution suggested in [15℄ to simulated sequentially anetwork of automata, we obtain for N = (I,A(1), ..., A(k), b) the sequential itera-ting network N ′ = (I ′, A′, b′) where :� I ′ =
k+1
⋃

p=1

Ip with Ip = {(p − 1)n + 1, ..., (p − 1)n + n}

� A′ =















0 A(k) A(k − 1) · · · A(1)
A(1) 0 A(k) · · · A(2)... ... ... ...
A(k − 1) A(k − 2) A(k − 3) · · · A(k)
A(k) A(k − 1) A(k − 2) · · · 0















0 is the 0-onstant matrix� b′ = (b1, b2, ..., bk+1), bp = b ∀p ∈ {1, ..., k + 1}This simulation an be used to bound the transient length of parallel iteration withmemory. Indeed let t ≥ k + 1 suh that t = (p − 1) mod (k + 1) (1 ≤ p ≤ k + 1).The updating of N ′ an be written :8>>><>>>: xi(t) = xi(t − 1) if i ∈ Iq and q 6= p

xi(t) = 1 k+1P
q=1

P
j∈Iq

ai′j′((p − q) mod (k + 1))xj(t − 1) − bi

!
if i ∈ Ip (12)where i′ = i − (p − 1)n, j′ = j − (q − 1)n and a(0) = 0.It is a blok sequential iteration on neural network (sequential with respet to theorder of bloks Ip and parallel within eah blok).3.1 Transient length of blok sequential iteration on neuralnetworkLet N = (I,A, b) a neural network and I1, ..., Il an ordered partition (withrespet the order of Z) of I = {1, ...,m} ; i.e i < i′ if i ∈ Ir, i′ ∈ Ir′ with r < r′. Theblok sequential updating of N is : at time t > 0, t = (r − 1) mod l (1 ≤ r ≤ l) :



















xi(t) = xi(t − 1) if i ∈ Ir′ and r′ 6= r

xi(t) = 1( l
∑

r′=1

∑

j∈I
r′

aijxj(t − 1) − bi

)

if i ∈ Ir

(13)We now show the following proposition :Proposition 4 If A is a real symmetri matrix with aij = 0 for i, j ∈ Ir (1 ≤ r ≤
l), then the funtional [4℄ :

Eb(x(t)) = −
1

2

m
∑

i=1

xi(t)

m
∑

j=1

aijxj(t) +

m
∑

i=1

bixi(t) (14)is a stritly dereasing Lyapunov funtional for the blok sequential iteration of theneural network. 5



Corollary 1 If A is a real symmetri matrix with aij = 0 for i, j ∈ Ir (1 ≤ r ≤ l),then the periods T of the blok sequential iteration on the neural network satis�es
T = l.Let E∗

b (x(t)) be the funtional [4℄ de�ned by :
E

∗

b (x(t)) = −
1

2

mX
i=1

(2xi(t) − 1)

mX
j=1

aij(2xj(t) − 1) +

mX
i=1

 
2bi −

mX
j=1

aij

!
(2xi(t) − 1) (15)Proposition 5 Let A be a real symmetri matrix with aij = 0 for i, j ∈ Ir (1 ≤ r ≤

l). The di�erene ∆tE
∗

b = E∗

b (x(t))−E∗

b (x(t− 1)) = 4∆tEb and then E∗

b (x(t)) is astritly dereasing Lyapunov funtional for the blok sequential iteration on neuralnetwork.The funtional E∗

b (x(t)) is a more appropriate Lyapunov funtionnal to studythe transient length of N . Indeed, it is easy to show that |E∗

b (x(t))| ≤ 1

2
‖A‖ +

∥

∥2b − A1
∥

∥

1
. Denotes by X̄∗ the set of all initial onditions whih do not belong toa period of length l :

X̄
∗ = {x (0) ∈ {0, 1}n suh that x (0) 6= x (l)}If X̄∗ 6= ∅ de�ne :

e
∗ = min

�
− (Eb (x (l)) − Eb (x (l − 1))) : x (0) ∈ X̄∗

	 (16)We note e∗ = 0 if X̄∗ = 0.Proposition 6 Let A be a real symmetri matrix with aij = 0 for i, j ∈ Ir (1 ≤
r ≤ l). The transient length of blok sequential iteration τb(A, b) is bounded by :

τb(A, b) ≤
1

4e∗

(

‖A‖ + 2
∥

∥2b − A1
∥

∥

) (17)Remark 2. Sine N ′ is a blok sequential iterating neural network with a′

ij = 0when i, j ∈ Ip (1 ≤ p ≤ k + 1), its transient length τb(A
′, b′) is bounded by :

τb(A
′, b′) ≤

1

4e

(

‖A′‖ + 2
∥

∥2b′ − A′1
∥

∥

) (18)To ompare this bound with the ones obtained in Theorem 3, Eq. (18) must berewritten as follows :
τb(A

′
, b

′) ≤
1

4e

 
2(k + 1)

2b −
kX

s=1

A(s)1

+ (k + 1)

kX
s=1

‖A(s)‖

! (19)Let
τ =

1

4e

 
(k + 2)

2b −
kX

s=1

A(s)1̄


1

+ k

kX
s=1

‖A(s)‖ − 2k

nX
i=1

ei

! (20)and
τ
′ =

1

4e

 
2(k + 1)

2b −
kX

s=1

A(s)1

+ (k + 1)

kX
s=1

‖A(s)‖

! (21)we �nd
τ
′ − τ =

1

4e

 
k

2b −

kX
s=1

A(s)1̄


1

+

kX
s=1

‖A(s)‖ + 2k

nX
i=1

ei

!
> 0 (22)Hene, the �rst bound (τ) is better than the ones obtained by sequential simulationof the parallel iteration of a neural network with memory.6



4 Sequential iteration with memoryWe de�ne the sequential iteration with memory as follows : the update of theneurons when the network evolves from t − 1 to t ours hierahially aording toa pre-established periodi order on I (we shall assume, without loss of generality,that the order on I is the same order as I posseses as a subset of Z). Thus, when theneuron i hanges from xi (t − 1) to xi (t), all the verties j < i have already evolved.The states onsidered for the iteration are xj (t + 1 − s) for j < i and xj (t − s) for
j ≥ i ; s = 1, ..., k.Thus the on�guration of the system are x (t) ∈ {0, 1}n, the set of interationmatries is {A (s) = (aij (s) : i, j ∈ {1, ..., n}) : s = 1, ..., k} and the threshold vetoris b = (bi : i ∈ {1, ..., n}). Sine a sum over an empty set of indexes is null (i−1

∑

j=1

= 0if i = 1), the sequential updating with memory of the neural network is written :
xi (t) = 1 i−1X

j=1

kX
s=1

aij (s) xj (t + 1 − s) +

nX
j=i

kX
s=1

aij (s) xj (t − s) − bi

! (23)When k = 1, we obtain a M Culloh and Pitts neural network iterating sequen-tially [12, 6℄.Let T be the period of the neural network. Let X = (x (0) , ..., x (T − 1)) be a
T -yle. For any ouple of loal yles (Xi,Xj) we de�ne the sequential funtional(algebrai invariant) by :

L (Xi, Xj) =

8>>>>>>>>>><>>>>>>>>>>:
kP

s=1

aij (s) ∆V k−s+1,s−1 (Xi, Xj) if j < i

k−1P
s=1

aij (s) ∆V k−s,s (Xi, Xj) if j = i

kP
s=1

aij (s) ∆V k−s,s (Xi, Xj) if j > i

(24)From Lemma results obtained by Goles et al. in [9℄ we �nd :if τ (Xi) |k then L (Xi, Xj) = 0 for any j ∈ I (25)Now for evolution Eq. (23) we establish the following lemma :Lemma 1 For any family of interation matries (A (s) : s = 1, ..., k) suh that
aii (k) ≥ 0 for any i ∈ I we have :X

j∈I

L (Xi, Xj) ≤ 0 for any i ∈ I (26)
L (Xi, Xj) = 0 for any j ∈ I i� X

j∈I

L (Xi, Xj) = 0 i� τ (Xi) |k (27)X
j∈I

L (Xi, Xj) < 0 i� τ (Xi) does not divide k (28)X
i∈I

X
j∈I

L (Xi, Xj) = 0 i� τ (Xi) |k for any i ∈ I (29)Now assume that the set of interation matries (A (s) : s = 1, ..., k) satis�y :
diag (A (s)) = diag (A (s + 1)) ∀s = 1, ..., k − 1 (30)where diag (A (s)) = (aii (s) : i ∈ I)Theorem 4 If the lass of interation matries (A (s) : s = 1, ..., k) is palindromi(i.e. satisfy (3)) and satisfy (30) then the period T of the neural network iteratedsequentially with k-memory satis�es T |k.7
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