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RESUME. Nous étudions I'itération avec mémoire ou la mise a jour considére une suite
d'états de chaque site et ou I'ensemble des matrices d'interaction est palindromique.
Nous analysons deux modes d'itération des réseaux : l'itération paralléle avec mémoire
et |'itération série avec mémoire que nous introduisons dans ce papier. Nous définissons
pour l'itération paralléle des fonctionnelles de Lyapunov qui nous permettent de carac-
tériser les périodes et de borner les longueurs des transitoires des réseaux de neurones
itérants avec mémoire. Pour l'itértion série, nous utilisons un invariant algébrique pour
caractériser les périodes du modéle d'évolution étudié.

ABSTRACT. We study memory iteration where the updating consider a longer history
of each site and the set of interaction matrices is palindromic. We analyze two different
ways of updating the networks : parallel iteration with memory and sequential iteration
with memory that we introduce in this paper. For parallel iteration, we define Lyapunov
functional which permits us to characterize the periods behaviour and explicitely bounds
the transient lengths of neural networks iterated with memory. For sequential iteration,
we use an algebraic invariant to characterize the periods behaviour of the studied model
of neural computation.
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1 Introduction

Caianiello [1] has suggested that the dynamic behaviour of a neuron in a neural
network with k-memory can be modeled by the following recurrence equation :

xi(t)—l(ZZaij(s)wj(t—s)—bi), t>k (1)

=1 s=1

where
1 is the index of a neuron, i =1, ..., n.

— z; (t) € {0,1} is a variable representing the state of the neuron ¢ at time ¢.

— k is the memory length, i.e., the state of a neuron 7 at time ¢ depends on the
states z; (t —1),...,x; (t — k) assumed by all the neurons (j = 1,...,n) at the
previous steps t — 1,....,t — k (k > 1).

—ai; (s) (1 <4,5 <nand 1 < s < k) are real numbers called the weighting
coefficients. More precisely, a;; (s) represents the influence of the state of the
neuron j at time ¢ — s on the state assumed by the neuron i at time ¢.

b; is a real number called the threshold.
1 is the Heaviside function : 1 (u) =0if u <0, and 1 (u) =1 if u > 0.

Neural networks were introduced by Mc Culloch and Pitts [12], and are being
investigated in many fields of artificial intelligence as a computational paradigm
alternative to the conventional Von Neumann model. Neural networks are able to
simulate any sequential machine or Turing machine if an infinite number of cells
is provided. Recently, neural networks have been studied extensively as tools for
solving various problems such as classification, speech recognition, and image pro-
cessing [5]. The field of appplication of threshold functions is large [9, 11, 5].

Since neural network models have also been inspired by neurophysiological know-
ledge, the theoretical results may help to broaden understanding of the computa-
tional principles of mental processes.

The dynamics generated by Eq. (1) have been studied for some particular one-
dimensional systems :

— when k = 1, one obtains a Mc Culloch and Pitts neural network [12]. Some

results about the dynamical behaviour of these networks can be found in
[12, 11].
when n = 1, one obtains a single neuron (proposed by Caianiello and De Luca
[2]) with memory that does not interact with other neurons. See [2, 3, 14] for
some results.
There are few results in the study of evolution induced by Eq. (1). In [7] Goles
established the following result :

Theorem 1 [7]. If the class of interaction matrices (A (s): s =1,...,k) is palindro-
mic the periods T of parallel iteration with memory satisfies T|k + 1.

In [15] Tchuenté generalized the preceding result by showing that the parallel itera-
tion of a network of automata N can be sequentially simulated by another network
N’ whose local transition functions are the same as those of N. By implementing a
binary Borrow-Save counter, Ndoundam and Tchuenté show that :

Theorem 2 [13].There exist a Caianiello automata network of size 2n + 2 and
memory length k which describes a cycle of length k2.

In this work, we show some dynamical results for parallel iteration with memory
of neural network (Eq. (1)) when non-trivial regularities on coupling coefficients are
satisfied. We also define the sequential iteration with memory of neural network and
characterize its periodic behaviour. Our approach consists in defining appropriate
Lyapunov functional [11] or algebraic invariant [10].



The remainder of the paper is organized as follows : in Section 2, some basic
definitions and preliminary results are presented. In Section 3 we define two Lya-
punov functional for parallel iteration with memory of neural network, characterize
its periodic behaviour and bound its transient length. We also compare this bound
with another obtained using sequential simulation of parallel iteration. In Section
4, we introduce sequential iteration with memory of neural network and study its
periodic behaviour using an algebraic invariant.

2 Definitions and preliminary results

A neural network N iterated with a memory of length k is defined by N =
(I,A(1),..., A(k),b),whereI = {1,...,n}is the set of neurons indexes, A (1), ..., A (k)
are matrices of interactions and b = (b; : ¢ € {1,...,n}) is the threshold vector. Let
{z (t) € {0,1}" : t >0} be the trajectory starting from z (0),..., x (k —1); since
{0,1}" is finite, this trajectory must sooner or later encounter a state that occurred
previously - it has entered an attractor cycle. The trajectory leading to the attractor
is a transient. The period (T) of the attractor is the number of states in its cycle,
which may be just one - a fixed point. The transient length of the trajectory is noted
7(2(0),...,x (k—1)). The transient length of the neural network is defines as the
greatest of transient lengths of trajectories, that is :

T(A),...,A(k),b) =max {7 (x(0),..,x(k—1)):2(t) €{0,1}",0<t<k—1}

The period and the transient length of sequences generated are good measures of
the complexity of the neural network.

The updates of the state values of each neuron depends on the type of iteration
associated to the model. The sequential iteration consists of one by one updating the
neurons in a pre-established periodic order (i1, 12, ..., i,), where I = {iy,i9, ..., %, }.
The parallel iteration consists of updating the value of all the neurons at the same
time.

3 Parallel iteration with memory

Let us consider the parallel iteration with memory of a finite neural network
N=(I,A(1),..,A(s),b) give by Eq. (1); we can assume that :

n k
ZZCLU (S) wj # by, Yiel, Vu= (U1, ,un) € {0, l}n (2)

j=1s=1

We also assume that the set of interaction matrices (A (s) : s = 1,..., k) satisfiy the
palindromic condition :

Ak+1—s)=A(s)" for s=1,..,k (3)
ie.:

aij (k+1—38)=aj(s) Vi,je{l,...,n}, Vse {1,....k} (4)

Let {x (t) : t > 0} be a trajectory of the parallel iteration, we define the following
functional for t > k :

n k—1 n k—s k
E(z(t) = —Z (sz (t—s) <Z Zaij (s") z; (t—s—s')) —biZ:ci (t—s))

i=1 \s=0 j=1s’
(5)

Proposition 1 If the class of interaction matrices (A (s) : s = 1,...,k) is palindro-
mic, then the functional E (x (t)) is a strictly decreasing Lyapunov functional for
the parallel iteration with memory of neural network.



We now give another proof of the Theorem 1 using the preceding Lyapunov func-
tional.

Proof of Theorem 1. Let X = (2(0),...,z (T — 1)) a cycle of period T. From
the proof of Proposition 1 we found that, E (2 (0)) = ... = E(z (T —1)) iff ¥t =
0,..,T—1,z;(t) =a; (t+ k+1) for all i = 1, ...,n, which implies that 7 (X;) |k +1
Viel ThenT|k+1. 1

To study the transient phase, we will work with another Lyapunov functional
derived from E (z (t)). Define :

(6)

Proposition 2 If the class of interaction matrices (A (s) : s = 1,..., k) is palindro-
mic, then the functional E* (x (t)) is a strictly decreasing Lyapunov functional for
the parallel iteration with memory of neural network .

Denotes by X the set of all initial conditions which do not belong to a period of
length £+ 1 :
X = {x(0) € {0,1}" such that = (0) # = (k+ 1)}

Recall that X is empty iff the transient length of the neural network is null. Tf X # ()
define :
e=min{—(E(z(k+1))— E(z(k)):z(0) € X} (7)

We note e = 0 if X = 0.

Proposition 3 Let {x (t) : t > 0} be a trajectory; E* (x (t)) is bounded by :

k k
E*(x(t)>—(k+1)[20-) A(s).1 Z —s+1)[[A(s)]l (8)
and X X
20— A(s).1 —2kZei—|—Z(s—l)\|A(s)|| 9)
where :

n k
ZZ(IZ‘J‘ (S) Uj (S) — bz :

e; = min{
j=1s=1
n o n n B .
and |A (s)|| = Z Z laij (s)|, |lully = > |us| for any vector u e R"™, 1= (1,...,1)
i=1j=1 i=1
is the 1-constant vector.

u(s) €{0,1}", s =1, ,k} (10)

Theorem 3 If the class of interaction matrices (A (s) : s = 1,..., k) is palindromic,
then the transient length 7 (A (1), ..., A(k),b) of parallel iteration with memory of
neural network is bounded by :

(A1), .., A(k),b) < £ ((k+2) sz— ijA(s)i

s=1

k n
+kY HA(s)H—QkZei) if e>0
1 s=1 i=1

(A1), Ak),b)=0 if e=0
(11)



For k = 1, this bound is obtained in [8] and a family of neural network which attains
it is given.

Remark 1. By using construction suggested in [15] to simulated sequentially a
network of automata, we obtain for N = (I, A(1), ..., A(k),b) the sequential itera-
ting network N’ = (I, A’, V') where :

k+1
-I'= 71]p with I, ={(p—1)n+1,....(p— L)n+n}
0 A(k) Alk=1) -+ A(1)
A(1) 0 A(k) e A(2)
- A= : : :
Ak—1) Ak—2) A(k-3) -+ A(k)
A(k) Alk—=1) A(k—-2) --- 0

0 is the O-constant matrix

_ b/ = (b17b27"'7bk:+1); bp = b Vp c {177k + 1}

This simulation can be used to bound the transient length of parallel iteration with
memory. Indeed let t > k+ 1 such that t = (p— 1) mod (k+1) (1 <p < k+1).
The updating of N’ can be written :

xi(t) = xi(t — 1) ifielyandqg#p
zi(t) = 1 (’“ii T ay((p — a) mod (5 + 1))y (¢~ 1) - bi) ifiel,
(12)

where i/ = ¢ — (p — 1)7’L, j/ :] — (q — 1)n and a(O) = 6

It is a block sequential iteration on neural network (sequential with respect to the
order of blocks I, and parallel within each block).

3.1 Transient length of block sequential iteration on neural
network

Let N = (I,A,b) a neural network and Iy,...,I; an ordered partition (with
respect the order of Z) of I = {1,...,m};iei < i ifi € I., i’ € I,» with r <1’. The
block sequential updating of N is : at time ¢ >0, ¢t = (r — 1) mod [ (1 <r <) :

xzi(t) =a;(t—1) ifielandr #r
! (13)
%1(t) =1 Z Z aijxj(t — 1) — b1 Zf 1€ Ir
r'=1j€l,.,
We now show the following proposition :

Proposition 4 If A is a real symmetric matriz with a;; =0 fori,j € I, (1 <r <
1), then the functional [4] :

Ey(o(t) = —5 Yo wi() > aujay6) + 3 bii(t) (19

is a strictly decreasing Lyapunov functional for the block sequential iteration of the
neural network.



Corollary 1 If A is a real symmetric matriz with a;; =0 fori,j € I, (1 <r <1),
then the periods T of the block sequential iteration on the neural network satisfies
T=1.

Let E;f(z(t)) be the functional |4] defined by :

By (x(t)) = f% D) =)D ai(2wi() 1)+ 3 (2@- -2 aij> (2ai(t) — 1) (15)

Proposition 5 Let A be a real symmetric matriz with a;; =0 fori,j € I, (1 <r <
1). The difference AyE} = Ef(x(t)) — Ef (x(t — 1)) = 4A,Ey and then E;(z(t)) is a
strictly decreasing Lyapunov functional for the block sequential iteration on neural
network.

The functional Ej(x(t)) is a more appropriate Lyapunov functionnal to study
the transient length of N. Indeed, it is easy to show that |E;(z(t))| < 5 [Al +

|2b — AT||,. Denotes by X* the set of all initial conditions which do not belong to
a period of1 length [ :

X* ={z(0) € {0,1}" such that z (0) # x ()}
If X* # () define :
" =min{— (B (z (1)) — Ep (x (I — 1)) : 2 (0) € X*} (16)
We note e* = 0 if X* = 0.

Proposition 6 Let A be a real symmetric matriz with a;; = 0 for i,j € I, (1 <
r <1). The transient length of block sequential iteration 1,(A,b) is bounded by :

1

<
Tb(A’ b) — 48*

([l A]l + 2|26 — AT]|) (17)

Remark 2. Since N’ is a block sequential iterating neural network with aj; =0
when i,j € I, (1 <p < k+ 1), its transient length 7,(A’,V’) is bounded by :

(A V) < — (JJA'|| + 2|2 — A'T||) (18)

1
4e
To compare this bound with the ones obtained in Theorem 3, Eq. (18) must be
rewritten as follows :

(ALY < 4% (2(k+ 1) |26 - zk;A(s)l (k1) Xk; ||A(s)|) (19)
Let
;o i ((k—f— 2) |26 — Zk:A(s)T + k;f: I1A(s)|| Qki:ei) (20)
and - L B
—— <2<k+1> -3 A1 +<k+1)2kj||A(s>|) (1)
we find h -

k k n
/ 1 -
T-T= (k 2b—2;A(s)1 +2;|A(s)||+2kzlei) >0 (22)
S= 1 S= 1=

Hence, the first bound (7) is better than the ones obtained by sequential simulation
of the parallel iteration of a neural network with memory.




4 Sequential iteration with memory

We define the sequential iteration with memory as follows : the update of the
neurons when the network evolves from ¢ — 1 to ¢t occurs hierachically according to
a pre-established periodic order on I (we shall assume, without loss of generality,
that the order on I is the same order as I posseses as a subset of Z). Thus, when the
neuron 4 changes from x; (t — 1) to z; (¢), all the vertices j < ¢ have already evolved.
The states considered for the iteration are z; (t +1 —s) for j < i and z; (t — s) for
j>i;s=1,..,k.
Thus the configuration of the system are z () € {0,1}", the set of interaction
matrices is {A (s) = (a5 (s) 14,7 € {1,...,n}) : s = 1,..., k} and the threshold vector
i—1

is b= (b; : 4 € {1,...,n}). Since a sum over an empty set of indexes is null (> =0
j=1

if i = 1), the sequential updating with memory of the neural network is written :

i—1 k n k
z (1) =1 (ZZa“ (s)x; (t+1 —s)—!—ZZaU (s)x; (t —s) —bi) (23)
j=1s=1 j=i s=1
When k = 1, we obtain a Mc Culloch and Pitts neural network iterating sequen-
tially [12, 6].
Let T be the period of the neural network. Let X = (« (0),...,2 (T — 1)) be a
T-cycle. For any couple of local cycles (X;, X;) we define the sequential functional
(algebraic invariant) by :

k

r > ai () AVFTTLTH(XG XY dif g <
s=1
k—1

L(X:,X;) = aij (s) AVF=5 (X;, X;) if j=1i (24)

s=1
k
21 aij (s) AVF= (X, X;) if j>i

From Lemma results obtained by Goles et al. in [9] we find :

if 7(X;) |k then L (X;, X,;) =0 for any j € I (25)

Now for evolution Eq. (23) we establish the following lemma :

Lemma 1 For any family of interaction matrices (A(s):s=1,....k) such that
ai; (k) >0 for any i € I we have :

> L(Xi,X;) <0 forany i €1 (26)
Jjerl
L(Xi,X;) =0 for any j € I iff Y L(Xi,X;)=0iff 7(X;) |k (27)
jelI
D L(Xi, X5) <0 iff 7(X,) does not divide k (28)
jel
ZZL(Xi,Xj)zoiﬁT(Xiﬂk foranyiel (29)
i€l jeI

Now assume that the set of interaction matrices (A (s) : s = 1,..., k) satisfiy :
diag (A(s)) =diag(A(s+1)) Vs=1,..,k—1 (30)
where diag (A (s)) = (a;; (s) :i € 1)

Theorem 4 If the class of interaction matrices (A(s) : s =1,..., k) is palindromic
(i.e. satisfy (3)) and satisfy (30) then the period T of the neural network iterated
sequentially with k-memory satisfies T'|k.



5 Conclusion

We study neural networks of Caianiello under some assumptions on interaction
matrices. For parallel iteration, using Lyapunov functional, we characterize the per-
iods and bounds explicitely the transient lengths of neural networks. The bound is
compare with the ones obtained by sequential simulation of the parallel iteration
of a neural network with memory and proves more better.We introduce sequen-
tial iteration with memory of neural networks and, using an algebraic invariant,
characterize its period behaviour.
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