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ABSTRACT. We are interested in Algebraic Combinatorics, a subject we give an overview, and in
Symbolic Computation. In this paper we describe a problem we recently encountered in some ex-
periments we are still carrying on. This problem is about generating polynomials counting lattice
points in certain particular types of convex polytopes. The lattice points numbers are interpreted as
Kostka numbers and Littlewood-richardson coefficients and they are of great interest in algebraic com-
binatorics. For some demonstrations, we make use of MuPAD-Combinat, an open-source algebraic
combinatorics package for the computer algebra system MuPAD.

RÉSUMÉ. Nos travaux se situent dans les domaines de la Combinatoire Algébrique dont nous fai-
sons une brève présentation, et du Calcul Symbolique ou Formel. Dans ce papier, nous présentons
un problème posé à la suite de certains calculs que nous avons effectués tout récemment; calculs
relatifs à la détermination des polynômes générateurs de nombres de Kostka et de coefficients de
Littlewood-Richardson. Le problème en question porte plus généralement sur le degré réel d’un po-
lynôme énumérant les points entiers dans un polytope convexe dilaté par un facteur entier. Nous ef-
fectuons quelques démonstrations de calculs à l’aide de MuPAD-Combinat, un package open source
pour la combinatoire algébrique en MuPAD.
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1. Introduction

1.1. An overview on Algebraic Combinatorics

Situated halfway between mathematics and computer science, combinatorics, with
some simplification, can be said to be the mathematics of the discrete and of the finite.
Algebraic combinatorics consists in using techniques from algebra, topology and geom-
etry, in the solution of combinatorial problems, and conversely, in using combinatorial
methods to approach problems in those areas [4]. Although combinatorial mathemat-
ics has been pursed since time immemorial, and at a reasonable scientific level at least
since Leonhard Euler (1707-1783), the subject has come into its own only in the last few
decades [1]. One of the most basic properties of a finite collection of objects is its number
of elements. Given an infinite sequence of sets{An}+∞n=0 parameterized byn, sets of ob-
jects satisfying a set of combinatorial specifications, one is interested in how to compute
the cardinalityan = |An| [4]. More precisely is there an efficient algorithm to gener-
ate or count those objects, is there any mathematical formulas? Algebraic combinatorics
approaches such problems using generating functions and bijective constructions. Alge-
braic combinatorics very often deals with counting partitions of various kinds, meaning
the number of ways to break an object into smaller objects of the same kind, the study of
partitions was begun by Euler and is very active to this day [1].

There are also strong and interesting connections between combinatorics and alge-
braic structures in general, such as monoid structures, symmetric functions, the study of
irreducible representations of the symmetric group, etc. All those subjects are unfortu-
nately too sophisticated to go into details here. Combinatorics is also used in many ways
in computer science, for instance for the construction and analysis of various algorithms.
Most of the work carried out in algebraic combinatorics is done using words on ordered
alphabets. One can read [2] for an introduction to algebraic combinatorics on words.



1.2. Preliminary definitions

The following definitions are useful to understand the origin of the problem we are inter-
ested in, but not necessarily the more general problem itself.

Partitions, Ferrers diagrams and Young tableaux

A partition of a positive integern is a way of writingn as a sum of weakly decreasing
integers. For exampleλ = (4, 2, 2, 1) andµ = (2, 1) are partitions ofn = 9 andn ′ = 3
respectively. We writeλ ` n andµ ` n ′, |λ| = n and|µ| = n ′. TheFerrers Diagram
Fλ associated to a partitionλ = (λ1, λ2, ..., λp) consists of|λ| = n boxes, arranged
in `(λ) = p left-justified rows of lengthsλ1, λ2, ..., λp. Rows inFλ can be oriented
downwards or upwards.Fλ is called the shape ofλ. If Fλ containsFµ, then theskew
diagram(or skew partition)λ/µ is the one obtained fromFλ by deletingFµ. A semi-
standard Young tableau(SSY T λ) is a numbering of the boxes ofFλ with entries from
{1, 2, ..., n}, weakly increasing across rows and strictly increasing up (or down) columns.
A tableau isstandard(SY T λ) if all its entries are different. Skew tableaux are defined in
an analogous way. For example, forλ = (4, 2, 2, 1) andµ = (2, 1), the Ferrers diagram
F λ, the skew Ferrers diagramλ/µ, a semi-standard tableau and a standard tableau both
of shapeλ, and a standard skew tableau of shapeλ/µ are as follows:

5
3 6
2 4
1 2 2 5

7
5 8
2 6
1 3 4 9

5
4 6

2
1 3

Schur functions, Kostka numbers and Littlewood-Richardson coefficients

A Symmetric Functionis a function which is symmetric or invariant under permutation
of its variables.

f(xσ(1), xσ(2), ..., xσ(n)) = f(x1, x2, ..., xn) (1)

whereσ is any permutation of the symmetric groupSn. For example let us consider the
functionf(x1, x2, x3) = x1x2 + x1x3 + x2x3. If we expressf(xσ(1), xσ(2), xσ(3)) for
any permutationσ in S3, we get back the expression off(x1, x2, x3). Sof is an example
of symmetric function on3 commutative variables. One can read [7] for an introduction
to symmetric functions. The set of all symmetric functions on commutative variables is an
algebra spanned by many known bases one of which is the collection of Schur functions
indexed by partitions of all integers. Forλ ` n, theSchur functionsλ is the symmetric
function defined as:

sλ(x) =
∑

T ∈ SSY T (λ)

xm1
1 xm2

2 ... xmn
n (2)

whereSSY T (λ) is the set of all semi-standard tableaux of shapeλ, mi is the number
of entries equal toi in T for i = 1, 2, ..., n. For example, forµ = (2, 1) there are 8
semi-standard tableaux of shapeµ:

2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3

So the Schur functionsµ(x) is the symmetric function defined as:

s21(x) = x2
1 x2 + x2

1 x3 + x1 x2
2 + 2 x1 x2 x3 + x1 x2

3 + x2
2 x3 + x2 x2

3



One will get it this way using MuPAD-Combinat: first create an instance of the algebra
of symmetric functions:

>> sym := examples::SymmetricFunctions():

then expand the corresponding Schur function on an alphabet ofn variables:

>> alphabet := [x1, x2, x3]:
>> expand(sym::s([2,1])(alphabet));
x1^2 x2 + x1^2 x3 + x1 x2^2 + 2 x1 x2 x3 + x1 x3^2
+ x2^2 x3 + x2 x3^2

Littlewood-Richardson coefficients(L-R. coefs.)c ν
λµ are defined as the structure con-

stants for the multiplication in the basis of Schur functions. So ifλ ` n andµ ` m:

sλ sµ =
∑

ν ` n+m

c ν
λ µ sν (3)

For example, it may be a little bit hard to compute it by hand, but one will find that:

s21 s21 = s42 + s411 + s33 + 2 s321 + s3111 + s222 + s2211

Thusc 42
21, 21 = 1 andc 321

21, 21 = 2.
The product of two symmetric functions, in the basis of Schur functions is performed this
way using MuPAD-Combinat:

>> f := sym::s([2,1]) * sym::s([2,1]);
s[3,1,1,1] + s[4,1,1] + 2 s[3,2,1] + s[2,2,2] + s[2,2,1,1]
+ s[4,2] + s[3,3]

One may also want to express this product in another basis of the algebra of symmetric
functions, for instance the basis of monomial symmetric functions:

>> sym::m(f);
2 m[3,1,1] + 20 m[1,1,1,1,1] + 9 m[2,1,1,1] + 4 m[2,2,1] + m[3,2]

Usesym::e(f), sym::h(f) andsym::p(f) respectively to convert a symmetric func-
tion into its representation in the basis of elementary symmetric functions, complete
symmetric functions or power sums, see [7] for definitions. One can also use lrcalc
(Littlewood-Richardson Calculator), a package ofC andMaple programs, designed by
A. S Buch [3] for computing L-R. coefs. We have interfaced it with MuPAD-Combinat.

>> lrcalc::mult([2,1],[2,1]);
[ [1, [3,3]], [1, [4,2]], [1, [2,2,1,1]], [1, [2,2,2]],

[2, [3,2,1]], [1, [4,1,1]], [1, [3,1,1,1]] ]

>> L := [2,1]: M := L:
>> lrcalc::lrcoef([4,2],L,M), lrcalc::lrcoef([3,2,1],L,M);

1, 2

L-R. coefs can be combinatorially computed by enumerating some combinatorial ob-
jects calledYamanouchi words. A right (respectively left) Yamanouchi word on a com-
pletely ordered alphabet, for instance{1, 2, · · · }, is a wordw such that any right (re-
spectively left) factor ofw contains more entriesi than(i + 1). For example, the word



w = 2322131211 is a right Yamanouchi one. It’s valuation iseval(w) = (4, 4, 2). Ya-
manouchi words help compute L-R. coefs. According to a well known result named the
Littlewood-Richardson rule[2], cν

λ µ is the number of skew tableaux of shapeν/λ and
valuationµ, and whose row readings are Yamanouchi words. All those constructions are
based on a simple algorithm know as the Robinson-Schensted correspondence [2]. For ex-
ample, let us consider the three partitionsλ = (5, 2, 2), µ = (3, 2, 1) andν = (6, 4, 3, 2).
The Yamanouchi skew tableaux of shapeµ/λ and valuationµ are the following:

>> yamanouchi::list([[6,4,3,2],[5,2,2]],[3,2,1]);

2 3
2
1 1

1

1 3
2
1 2

1

1 2
3
1 2

1

Thus c 6432
522, 321 = 3. The Yamanouchi tabeaux listed correspond to the following Ya-

manouchi words:

>> map(%,skewTableaux::toWord);
[[2,3,2,1,1,1], [1,3,2,1,2,1], [1,2,3,1,2,1]]

Kostka NumbersKλµ are the number of distinctly labeled semi-standard Young tableaux
(SSY T λ) of shapeFλ and weightµ, that is to say withµi entriesi, for i = 1, 2, ..., ` (µ).
For example, ifλ = (4, 3, 1) andµ = (3, 3, 1, 1) then there are 4 semi-standard Young
tableaux(SSY T 431) of weight (3, 3, 1, 1). ThusK431, 3311 = 4. Use the following
commands to list those tableaux, or count them:

>> tableaux::list([4,3,1],[3,3,1,1]);

4
2 2 3
1 1 1 2

3
2 2 4
1 1 1 2

4
2 2 2
1 1 1 3

3
2 2 2
1 1 1 4

>> tableaux::kostka([4,3,1],[3,3,1,1]);
4

Kostka Numbers happen to be special kinds of Littlewood-Richardson coefficients [9].
So using the same technics as for the latter, one can compute the first. Most of their appli-
cations and utilizations are found in groups representation theory: Littlewood-Richardson
coefficients govern the decomposition of tensor products of irreducible representations of
the General Linear GroupGL(n) in accordance with the formula:

V λ ⊗ V µ =
∑

ν

c ν
λ µ V ν (4)

They are also useful in computing induction product of modules over the symmetric
group. See for example [9] for more details. So computing those numbers remains of
great interest in algebraic combinatorics.



2. A problem finding polynomials to count lattice points in
certain convex polytopes

Recall that L-R. coefsc ν
λµ are defined as the structure constants for the multiplication

in the basis of Schur functions (3). The problem we are presenting here is related to
computing those numbers.

2.1. Problem nature

A wide variety of topics in pure and applied mathematics involve the problem of
counting the number of lattice points inside a convex polytope of the form:P = {x :
Ax ≤ b, x ≥ 0}, whereA is an integral matrix, andb an integral vector. We are in-
terested in a family of counting functions of the form:φA(N) = {x : Ax ≤ Nv, x ≥
0, x integral}. That are functions which count the number of lattice points inside con-
vex polytopes given in terms of a fixed matriceA and a right-hand-side vectorb that is
changing as a single-parameter dilatation of a fixed initial vectorv. Geometrically, this is
interpreted as dilating the associated polytope by a positive integer factor, while leaving
the angles and proportions fixed. We first encountered this type of polytopes while in-
terested in the computation of stretched Kostka numbersKNλ,Nµ, and of stretched L-R.
coefsc Nν

Nλ, Nµ, that is those associated to fixed partitionsλ, µ andν all scaled by an in-
tegerN . Il is known ([9] and [5]) that those coefficients have a polynomial growth with
respect to the dilatation factorN ∈ N:

c Nν
Nλ, Nµ = p ν

λ µ (N) with p ν
λ µ (0) = 1 (5)

It is also possible to determine an upper bound (maxDeg) of the value of the degree of the
polynomialp [10]. Given three partitionsλ, µ andν, the L-R. coefc ν

λ µ can be computed
considering a model known as the hive model [9]. It consists in building a system of
inequalities defining a convex polytopeP = {x : Ax ≤ v, x ≥ 0, x integral}, where
A andv are entirely determined byλ, µ andν. Then for anyN ∈ N, the stretched L-R.
coef c Nν

Nλ, Nµ is the number of lattice points in the dilated polytopeNP = {x : Ax ≤
Nv, x ≥ 0, x integral}.

GivenmaxDeg, the upper bound of the value of the degree of the polynomialp; since
p ν

λ µ (0) = 1, the set of values{φA(N), N = 1 ..maxDeg } is sufficient to findp ν
λ µ

by interpolation. We can achieve the determination of this set with the help (of a prede-
fined subset) of the available computers of the Local Area Network: that is distributed
computation. The step-by-step process is described in [8]. In the example bellow:

Lambda: (7,6,5,4) ; Mu: (7,7,7,4) ; Nu: (12,8,8,7,6,4,2)
Max. Deg: 8
Dilat.(N): 0 1 2 3 4 5 6 7 8
Coef. : 1 12 62 212 567 1288 2604 4824 8349
P1(N): 11N + 1
P2(N): 39/2 N^2 - 17/2 N + 1
P3(N): 61/6 N^3 - 11 N^2 + 71/6 N + 1
P4(N): 11/6 N^4 - 5/6 N^3 + 55/6 N^2 + 5/6 N + 1
P5(N): 1/30 (N+3)(N+2)(N+1)(3N^2+7N+5) = P6(N) = P7(N) = P8(N)
Total number of successive identical polynomials: 4
Real. Deg: 5



are given three partitionsλ, µ andν, the predicted maximal degree (maxDeg) of the
polynomial, a list of values of the sought-after polynomial, and a set of polynomials
obtained by successive interpolations withk values fork ≤ maxDeg. To get this output:

>> lrPol::([7,6,5,4],[7,7,7,4],[12,8,8,7,6,4,2]);

2.2. Some experimental results

Below is a table showing some of the computations we’ve carried out. Those examples
were arbitrarily selected, and they suggest that the set of polynomials obtained by inter-
polation is often stationary. This means that for a given triple(λ, µ, ν), there is an integer
i0 probably depending onλ, µ andν, such that for anyi ≥ i0 the equalityPi

ν
λ µ = Pi0

ν
λ µ

holds. So we usually don’t need to interpolate the theoretical maximum number of points
to get the final polynomial. In other words, the polynomialP ν

λ µ usually has lower degree
than the maximum degree predicted.

n◦ partition(λ) partition(µ) partition(ν) max degree real degree
1 9,7,3 9,9,3,2 10,9,9,8,6 4 1
4 6,5,2,2 5,5,3,2,2,2,1 8,8,7,7,2,2,1 5 0
5 9,8,3,3 10,7,5,3 10,10,8,8,7,5 5 2
6 11,10,8,5 20,17,3 26,25,8,8,5,2 5 4
7 9,5,3,3,3 7,6,5,4,3 10,10,8,8,7,5 5 5
13 7,6,5,4 7,7,7,4 12,8,8,7,6,4,2 8 5
16 11,10,8,4,2 8,7,6,5,2 18,17,15,7,4,2 10 2
18 5,4,4,3,3,2,1 9,7,3,3,2,2,1 10,9,8,7,6,5,4 11 0
20 5,5,3,2,1,1 6,6,4,2,1 6,6,6,5,5,3,3,2 12 3
21 5,5,3,2,1,1 6,6,4,2,1 6,6,6,5,5,3,2,2,1 14 5

An entry in the table gives for a triple of partitionsλ, µ andν the maximal degree of
the polynomial counting lattice points in the corresponding dilated polytopes, and the
rank from which the interpolations give the same polynomial. For the technics used to
construct those polytopes, see [9] or [8].

2.3. One of the remaining questions

The formulation of the problem is completely independent of its origin. One can
forget about partitions, Kostka numbers and Littlewood-Richardson coefficients, and just
remind that: we are looking for a polynomialf with deg(f) ≤ d andf(0) = 1; f(N)
counts lattice points in a certain convex polytope, dilated byN ; we need at mostd values
of f to interpolate and findf ; we are receiving values off(N) in cascade,1 ≤ N ≤ d;
we interpolate each time we receive new values, using all the already available values.
One of the remaining questions is then the following:

should we decide to stop computations as soon as two consecutive polynomials ob-
tained from two consecutive interpolations are equal.

In other words,

if the lattice points in the dilatations of a given polytope are counted byf(N) where
N is the dilatation factor andf a polynomial having degreed, and if there exists a family
(f0 = 1, f1, · · · , fd = f) of polynomials such thatfi counts lattice points in this polytope
dilated by factorsN for 0 ≤ N ≤ i, then can one havefi0 = fi0+1 andfi0+1 6= fi0+2

for a certain integeri0.
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A. Software presentation: MuPAD-Combinat

MuPAD-Combinat is an open-source algebraic combinatorics package for the com-
puter algebra system MuPAD. Its main purpose is to provide an extensible toolbox for
computer exploration, and foster code sharing between researchers in this area. The devel-
opment started in spring 2001, and the package currently contains functions to deal with
usual combinatorial classes (partitions, tableaux, graphs, trees, decomposable classes, ...),
Schubert polynomials, characters of the symmetric group, and weighted automata. It sup-
plies the user with tools for constructing new combinatorial classes and combinatorial
(Hopf) algebras. As an application, it provides some well-known combinatorial Hopf al-
gebras like the algebra of symmetric functions and many generalizations. There is also
some preliminary support for combinatorial Lie algebras and operads. The core of the
package is integrated in the official library of MuPAD since version 2.5.0.

MuPAD-Combinat is freely available for download and its documentation is also
available indvi, pdf andhtmlformats, athttp://mupad-combinat.sourceforge.net.


