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RÉSUMÉ. Un problème inverse d’identification de point sources dans un domaine du plan à partir
des données sur la frontière est considéré. Un résultat local de stabilité Lipschitzienne est donné.
Un procédé efficace et très élémentaire d’identification est exécuté et appliqué à des inclusions de
petites tailles et de faible conductivité.

ABSTRACT. The inverse problem of locating point wise sources in 2-D domain from over specified
boundary data is considered. A local Lipschitz stability result is given.
An efficient and very elementary identification process is performed and applied to small size conduc-
tivity defaults location.
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In this presentation we study the issues of stability and identification in the problem
of determining the locations and strengths of point sources for Poisson’s equation in 2-
D situations. When studying this inverse problem, we have in mind two applications.
The first one is borrowed from the bio-engineering communauty it concerns the loca-
tion of epileptic foci in the humain brain. This problem is known as the inverse electro-
encephalography problem. Epilepsy foci are usually modelled by point wise current di-
poles. The second motivation arises from the need to detect smooth small inclusions scat-
tered in planer matrix phase with a known background conductivity. In all this paper we
will refer to the following model problem :
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	�
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Where . is a bounded domain of IR 9 with sufficiently smooth boundary 2;:�<�=�: � = are
the monopolar points sources and their intensities, <?>= : $� = are the dipolar points sources
and their moments, @ is the outer unit normal of the surface 2!: 0 A B �" � 2 � and8CADBFE �" � 2 �HG An uniqueness result is established by El Badia and T.Ha-Duong in [3].
Our inverse problem is therefore, defined by the over determined boundary data

� 0 : 8 � and
it concerns the locations the point sources < = and the recovering of their intensities. Let us
point out that very little is known mathematically about stability of such a problem. The
last issue in studying such an inverse problem is dedicated to the inversion process. We
are concerned by the number of sources, their locations, their intensities and moments.
The algorithm in [3] is an algebraic method based on the reciprocity gap principle I ,
introduced in [1] for the inverse crack problem.

1. Stability results

1.1. The point wise sources case

The goal of this section is to study the stability of the inverse identification problems
under consideration, that is, roughly speaking to study if small perturbation in measure-
ments lead to points with their intensities in the vicinity of the original points sources
and their original intensities. We assume that both the flux and the electrical current are
available on the boundary 2 . To prove local Lipschitz stability, we use the concept of
reciprocity gap functional which is defined by :

I ��JK� �ML�8 : JKNPO �"RQTSVUXW
O�Y �"ZQTSVU 	[L\0 :Z]

J
] ,
N^O �"_QTSVU`W

O�Y �"RQaSVU
where

J AbB � . � �dc J AeB � � . � : 
 J �gfZh . Using the second Green formula, it is
straight forward :

I �iJR� � ������� � � Jj� < � � klJ AmB � . � [2]

Where the same notation is used for a point source < � resp( n � ) and its complex affixe, we
note that the corresponding intensities � � resp( o � ) can now be authorized to be complex.
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We consider the two problems
� = � + ��� :�� � and let us estimate the error � ��� :�� � where

� ��� :�� � �	��
�� ������� � < � 	 n � Q � U �  � � � 	 o � Q � U � and � A < � , � : < � , � being the set of

the permutations of c�� :��Z: G GaG :�� h .
��� � �

������� ������
	�
 � � ����� � � ����� � +-,/.
� � 0 � 1 ,32
4�54�7 � 8 1 ,32

[3]

and
�\� 9 � is the Laplace problem when � � : < � and 0 � are replaced by o � : n � and 0 9 .

where 0 � : 0 9 are in B �" � 2 � and 8 in B E �" � 2 � . We consider the positive numbers � � , � 9and � : we assume that the following conditions hold true :� < � 	 <�� ��� � � : � n � 	 n � ��� � � k � :�� �	� G �R: G G G :�� ���� � [4]� < � 	 n � ��� � � k � :�� � � G �Z: G GaG :�� �!�� � [5]� � � �"� � 9 : � o � ��� � 9 k � �	� :��R: GaG G :�� [6]� #$�&% � k # A . [7]

Theorem 1 . Assume that the configurations
� � c � � : < � h ��'_�(' � and � � c o � : n � h �)' ��' �satisfy the conditions (4), (5),(6) and (7), then we have :

� �*� :�� �+%-,/. 0 � 	 0 9 .10 " QaSVU
where

,
is a constant depending only on � � : � 9 : . and � where � is a bound on the

size of . .

Remark The same result is valid for dipolar sources.

2. Numerical experiments

2.1. Point wise sources : the numerical procedure

Our numerical process is based on the work of El-Badia and Ha-Duong in [3], for
the readers convenience we recall the main result of [3]. We denote for

� A IN :32 � �I �*# � � : # � : # �54  +76 are tests harmonic functions,

o � �
8999999
:

2 �2 ��;��GGG
2 ��;=< E �

>1??????
@

ABA < : � � �
899999999
:

< �� < �9 G G G < ��< ��;��� < ��;��9 G G G < ��; ��< 9� < 99 G G G < 9�G G GG G GG G G
< <C;j� E �� < � E �9 G G G < <C;j� E ��

>1????????
@
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where � is an upper bound known of � and � �
8999999
:
� �� 9GGG
� �

> ??????
@

A A � .

Lemma 2 :[3]
The number of monopolar source points is the rank of the vectors c o�� : o � : GaG G : o < E � h .
Lemma 3 :[3]
-The affixes < � : � �	� : GaG G :�� of the source points are the eigenvalues of n where n is the
matrix defined by : n � o � � � o ��;�� � � f : G GaG :�� 	-� G
-The intensities � � : � ��� : G GaG :�� are solution of the system : o�� � � ��� .

Remark :
For identifying the dipolar source points and refereing to [3], we use the same algorithm
taking � � ��� �� in the place of 2 � for

� ��� : GaG G :�� .
For numerical approach, we remark that for , �	� : G G G : � the matrix :

� o � o � G GaG o�� E � � �
8999999
:

� � � 9 G G G � �� � < � � 9 < 9 G G G � � < �GGG
� � < � E �� � 9 < � E �9 G G G � � < � E

�
�

>1??????
@

8999999
:

� < � G G G < � E ��� < 9 G G G < � E �9GGG� < �
G G G < � E ��

>1??????
@

where o � �
8999999
:

2 �2 ��; �GGG2 ��; � E �

>1??????
@

f % � % , 	 � Then 	
� � ���� � o � : o � : G GaG : o�� E � � �

� � � 9 G GaG � ���=�� � � < = 	 < � � 9 G if � � , .

If ,�� � : we can reduce the matter to the case , � � by letting � � ; � �
GaG G � � � � f

and 	 � � f . In particular
� 	 � �"� � �9 � � " E �� . Refereing to [6] the number of the source

points is the integer � for which
� 	 �
� � �9 � �9 � � " E �� and

� 	 = �)% �9 � =9 � = " E =� + ��  � : G GaG : � G Where � � and � 9 given in (6),(7). The integer � is the number of point
sources.

2.2. Numerical trials :

For simplicity, all the tests of this section are performed for the 2-D unit disc. The
boundary data of the discussed cases(i.e. the measurements) are generated by the fun-
damental solution of the problem (1). Before testing the method with imposed different
levels of noise on the boundary data, we will begin with a noise free case to point out that
the accuracy of the evaluation of I �*# � � is a crûrcial point in the inversion process to avoid
that fictitious point sources show up. Another way to filter these undesirable points is to
impose to � to be equal to the apriori unknown number � of source points. This will be
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possible with the method developed here after and which will be a good tool to smooth the
solution for the noisy data problem. This aspect will be clarified in the subsection (2.2.2).

2.2.1. Noise free case :

The results of this subsection are performed to show the efficiency of the above me-
thod for a noise free case. However, even for detecting only one source point, for a little
number of integration nodes on the boundary, the value of the reciprocity gap functional
at
# �

have not a good approximation, and some other very small intensity source points
(fictitious points) appears. These points can be filtered by imposing an admissibility test.
All the recovered sources which are out of the domain or having an intensity less than a
fixed tolerence epsilon value are eliminated. However, apriori selection of such an � is not
set up. Notice that no problem arises when the number source points is apriori known. In
the case of a low number of measurements we can obtain a satisfying result.In the method
described in the subsection (2.1) the number of source point is assumed unknown and the
elimination of parasite sources is done by increasing the measurements. Paradoxically,
the method which we will describe in the next section will allow to estimate the number
of source points in a noisy data case and not in a noisy free case one. Let’s observe that
with a fixed number , � of data on the boundary, we can resolve , times little approxi-
mated problems by considering for each one ���� data points number. This sampling of the
measured data will give us , less accurate solutions with areas containing fictitious points
and other containing admissible ones (Fig. 1).
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Figure 1.
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2.2.2. Noisy data case :

With noisy data, the solution given by the procedure described in (2.1) section loose
of their accuracy and we can note that the algorithm is not robust particularly in presence
of relatively great number of source points. In this case we can observe that the solution
is composed by fictitious points inside and outside the domain and five source points are
detected instead of four. This result illustrate that the admissibility test method which
impose to the solution to be located in the domain with an intensity greater then

�� � is
not efficient. By fractionating the measurements in some samplings, the superposition
of the identified points obtained by all the samplings give the zonas, around the source
points, with high density of identified points and zonas formed with some isolated points
Fig2.Obviously four dense zonas are detected. Recalculating the solution with all the data
by imposing to the number of source point, and then to the order of the matrix n , to
be equal to the dense zone number, we obtain regarding the noise level a good result of
locations and intensities, Fig.3.
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Figure 2. Zonas obtained by 2 and 4 sampling of the measurements.
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Figure 3. Identification when the order of the matrix � is equal to the dense zone number,
noise=5%, 10%
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We add to the over specified boundary data a random noise with respect to the maxi-
mum value of the measured data. The method is stable when the domain contains a small
number of monopolar sources. In fact, we obtain good results for perturbed data with an
additive random noise. The identification process deteriorates as the noise increases.

2.2.3. Small size inclusions

Our second application is devoted to the detect of inclusions of small size. We have
in mind the detection of mines. Mines are considered to be small with respect to the
prospected area and to have a significantly higher (metal) or lower (plastic) conductivity
than the surrounding soil. Taking advantage of the smallness of the inclusions, asymptotic
analysis was developed in order to design reconstruction algorithms. Let . be a conduc-
tor with conductivity 1 and assume that . contains conductivity imperfection 	 � of he
form 	 � � � # �  � � � : � � � : GaG G :�� : where � � are reference domains with Lipshitz
boundaries and � is a small number. The points

# � A . determine the location of the
imperfections whereas the domains � ��� IR 9 which describe their relative shapes, are
bounded, smooth, strictly star-shaped, and contain the origin 0. The parameter � measures
the common order of magnitude of the inclusions diameter : it is sufficiently small, so the
inclusions are distant enough from the boundary ] . . Suppose that the conductivity of 	 �
is � � for

� � � : GaG G :�� . If we apply a current � on ] . : then the voltage potential � � in the
presence of 	 � � the voltage potential � � is the B � -solution to

��� 9 �
������ �����

' G ��� � � ' � � � f +`,3.
465��4�7 � � 1 , ] .� 4
	 � � � f

[8]

Here @ denotes the unit outward normal to the domain . . The conductivity
� � is assumed

to be equal to 1 in the safe part of the domain .��� ������ 	 � � while on the
�����

inclusion 	 � � ,
we have

� � � � � : for some constant � � A IR � ; . The perturbation of voltage potential
due to the presence of small-separated inclusions  ���� � 	 � � is given

# A ] . by
������������� �����"!$# �&%&' �(���)�(*+����� �(*��"�-, %&.%&/10 �(*32"���54�6�798:#<;>=@?� ACBED ,

,F�HG AG AJI 7�K���� A 21����L M A I 7N� ��� A �"!
O ��; =�P �" ��L Where Q � 4 :�6 � � 	 �9SR�T U 1 � � 4/	 6 � :WV is the solution in the safe body and

�
the background conductivity is constant, � = is the polarisation matrix associated with the
domain � � . In two-dimensional case, with the expression 	 �9�RNT U 1 � � 4 	 6 � , the previous
formula reads� � ��������� �����"! DX � %&' �(� � �(*������ �(*+�"�-,�Y[Z)\ 7^]�_

/ 0
` 7 \�Z ` " 4�6 7 8:;>a

DX ?� ACBED ,
,F�HG AG A ���b�c� A ��L d 7e �b�H� A e a L M A I 7 � ��� A �"!

O ��; a P �" � . This asymptotic expansion show that this inclusions when � is small have be-
have like a dipolar sources. Now, given additional measurements of the potential on the
boundary : � �-f 4
	 �hg � : the inverse problem consists in recovering the inclusions para-
meters � � :�6 � :�� � : and �

G
In mine detection, however, as in some other applications, the

informations of real interest are the positions 6 � of the inclusions. We now want to detect
smooth inclusions of small size by the same algorithm described in the beginning of this
section. For our numerical tests, the applied boundary current flux is 8 ��i � � , 1Nj ��i � G The
domain is the unit ball of conductivity 1, the small disks are the inclusions of conductivi-
ties 0.01 with diameter � � f G flk , which generates synthetically the data (i.e. the potential
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� on the boundary 2 ) by finite element under the soft work MATLAB. In figure 4 the
inclusions are represented by a small circle and the dipoles detected by � .
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0.8

1

Figure 4. Identification of inclusions.

3. Conclusion

The main result of this work concerns the stability issue. It has been proved a local
stability result in the inverse problem of locating pointwise conductivity defaults by very
elementary tools. Such an inverse problem originate from biomedical applications, envi-
ronnement such that detection of pollution sources. Numerical experiments based on an
algebraic method [3], [6] have been performed. The main issue to be explored concerns
the study of the realistic situation of incomplete boundary data (i.e. the overspecified data
is available on a strict subset of the boundary). One possible direction consists, as a first
step, on reconstructing the missing data before running the recovering algorithm.
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