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Abstract: We study a dual mixed formulation of the elasticity system in a polygonal
domain of the plane with mixed boundary conditions and its numerical approximation.
The Neumann boundary conditions (or traction boundary condition)is imposed using
a Lagrange multiplier corresponding to the trace of the displacement field. Moreover
the strain tensor is introduced as a new unknown and its symmetry is relaxed, also by
the use of a Lagrange multiplier (the rotation). The singular behavior of the solution
requires to use refined meshes to restore optimal rates of convergence. Uniform error
estimates in the Lamé coefficientλare obtained for large λ.

Keywords: Mixed FEM, Lagrange multiplier, elasticity problem, inf-sup condition.

Résumé: Nous étudions une formulation duale mixte du problème de l’élasticité
dans un domaine polygonal du plan avec des conditions au bord mixtes et son approxi-
mation numérique. La condition de Neumann est imposée en utilisant un multiplicateur
de Lagrange qui est la trace du champ de déplacement. En outre le tenseur de contrainte
est introduit comme nouvelle inconnue. Le comportement singulier de la solution nous
amène à considérer des maillages raffinés pour avoir des taux de convergence optimaux.
Des estimations d’erreur uniformes en terme du coefficient de Lamé λ sont obtenues
pour de grandes valeurs de λ.

Mots clés: MEF mixte, multiplicateur de Lagrange, problème de l’élasticité, con-
dition inf-sup.
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1 Introduction

The analysis of classical finite element methods with Lagrange multiplier, originally
developed in [1] has been considered for diverse problems, like the Laplace problem,
the biharmonic equation or the Stokes system. On the other hand, the dual mixed
finite element method (see [3, 13, 14]) has the advantage to introduce new unknwons
like stresses and/or fluxes, quantities of physical interests, which are then computed
directly with a good accurency, avoiding to use numerical postprocessing. Many papers
are devoted to the elasticity system, let us quote [3, 6, 7]. For the elasticity system, this
method has furthermore the advantage to avoid locking effect for large Lamé coefficient
λ.

Recently Babuska and Gatica [2] have introduced a dual mixed finite element method
for the Laplace equation with a Lagrange multiplier in order to impose nonhomogeneous
Neumann boundary conditions.

Accordingly the goal of our paper is to extend the analysis made for the Laplace
equation in [2] to the elasticity system. We furthermore want to take into account the
singular behavior of the solution near the singular points of the domain by using refined
meshes. Therefore contrary to [2], we do not use quasi-uniform meshes but use locally
refined meshes. As a consequence we need to modify the norm of the approximation
space in order to obtain a uniform discrete inf-sup condition. In [10, 11] the authors
used a weighted mesh-dependent norm, we here prefer to use a standard L2-norm . In
comparison with the norm used in [2] and in [10, 11], our norm is more simple in a
pratical point of view.

2 The dual mixed variational formulation

Let Ω be a simply connected domain of R2 with polygonal boundary Γ such that the
interior angle at each corner lies in (0, 2π). Let ΓD and ΓN be disjoint open subsets
of Γ such that |ΓD| 6= 0 and |ΓN | 6= 0 and Γ = ΓD ∪ ΓN (the symbol | · | means here
length).

In the static theory of linear isotropic elasticity, the equation satisfied by the

displacement field u is − divσs(u) = f in Ω, (1)

where f represents the body force density, ε(u) = 1
2 (∇u + (∇u)T ) is the strain tensor,

σs(u) = 2µε(u) + λtrε(u)δ,

is the stress tensor, δ is the identity tensor, and finally µ, λ are the Lamé coefficients
with µ ∈ [µ1, µ2] and λ > 0.

This balance equation is completed by boundary conditions to get the system:




−divσs(u) = f in Ω,
u = 0 on ΓD,

σs(u)n = g on ΓN ,
(2)

where g is the surface force density and n is the unit outward normal vector to Γ.
In the sequel, we will use the following notations: If σ = (σij), τ = (τij) ∈

(L2(Ω))2×2, then we denote by σ : τ =
∑

i,j σijτij , (σ, τ) =
∫
Ω

σ : τdx.

For shortness the L2(D)-norm will be denoted by ‖ · ‖D and in the case D = Ω, we
will drop the index Ω.

Finally the notation a . b means here and below that there exists a positive constant
C independent of a and b, of the meshsize of the triangulation and of the parameter λ
(but it may depend on µ1, µ2 and Ω), such that a ≤ C b.
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The variational formulation of (2) is wellknown (see section I.1.2 of [4]), and is
summarized in the next Lemma.

Lemma 2.1 Let f ∈ (L2(Ω))2 and g ∈ (H− 1
2 (ΓN ))2, then there exists a unique solution

u ∈ (H1
0,ΓD

(Ω))2 of
∫

Ω

(2µε(u) : ε(v) + λtrε(u)trε(v))dx =
∫

Ω

fvdx+ < g, v >ΓN
, ∀v ∈ (H1

0,ΓD
(Ω))2. (3)

For the mixed formulation of problem (3), we introduce the additional unknowns

σ = 2µε(u), p = −λdivu, ω =
1
2

curl u, ξ = −u|ΓN
.

This last unknown is a Lagrange multiplier, which is introduced in order to impose the
boundary condition on ΓN (see below).

Let us further define the spaces

Σ = {(τ, q) ∈ (L2(Ω))2×2 × L2(Ω) : div(τ − qδ) ∈ (L2(Ω))2},
Q = (L2(Ω))2 × L2(Ω), M = Q× (H

1
2
00(ΓN ))2.

For shortness we often write the pairs (σ, p), (τ, q) ∈ Σ by σ = (σ, p), τ = (τ, q) and
similarly the pairs (u, ω), (v, θ) ∈ Q by u = (u, ω), v = (v, θ).

With these notations the mixed variational formulation of problem (3) is: Find
(σ, (u, ξ)) ∈ Σ×M such that

{
A(σ, τ) + B(τ , (u, ξ)) = 0 ∀τ ∈ Σ,

B(σ, (v, α)) = F (v, α) ∀(v, α) ∈ M,
(4)

where the bilinear forms A : Σ×Σ → R, B : Σ×M → R and the linear form F : M → R
are defined by

A(σ, τ) =
1
2µ

(σ, τ) +
1
λ

(p, q),

B(τ , (v, α)) = (div(τ − qδ), v) + (as(τ), θ)+ < (τ − qδ)n, α >ΓN
,

F (v, α) = −
∫

Ω

fvdx+ < g, α >ΓN .

First, we show the equivalence between the standard and mixed formulations by the
following proposition:

Proposition 2.2 u ∈ (H1
0,ΓD

(Ω))2 is solution of (3) if and only if ((σ, p), ((u, θ), ξ)) ∈
Σ×M is solution of (4), where σ = 2µε(u), p = −λdivu, ω = 1

2 curl u, ξ = −u|ΓN
.

The previous Proposition guarantees in particular the well posedness of problem (4).

Theorem 2.3 There exists a unique solution (σ, (u, ξ)) ∈ Σ ×M of the mixed varia-
tional formulation (4) such that

||(σ, (u, ξ))||Σ×M . (1 +
1
λ

)2(||f ||+ ||g||
(H− 1

2 (ΓN ))2
).

To prove this theorem, we show the inf-sup condition of B and the uniform coerciveness
of A on the kernel of B and we apply Theorem I.4.1 of [3]
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3 The discrete problem

Let (Th)h>0 be a regular family of triangulations of Ω made of triangles K of diameter
hK , with h = max{hK ,K ∈ Th} and such that the points of ΓD ∩ΓN are vertices of Th.

For K ∈ Th, let us denote by bK , the standard bubble function defined by bK(x) =
λ1(x)λ2(x)λ3(x) where λi, i = 1, 2, 3, are the barycentric coordinates on K associated
with the vertices of K. The set of the edges of K will be denoted by EK . Let now set

Σh = {(τh, qh) ∈ Σ : qh|K ∈ P1(K) and

(τh − qhδ)|K ∈ (P1(K))2×2 ⊕ (R curl bK)2,∀K ∈ Th},
L2

h = {vh ∈ (L2(Ω))2 : vh|K ∈ (P0(K))2, ∀K ∈ Th},
Qh = {θh ∈ L2(Ω) : θh|K ∈ P1(K), ∀K ∈ Th}.
Here by (τh − qhδ)|K ∈ (P1(K))2×2 ⊕ (R curl bK)2 we mean that there exist polyno-

mials p11, p12, p21, p22 of degree ≤ 1 and two real numbers a1 and a2 such that

τh − qhδ|K =

(
p11 + a1

∂bK

∂x2
p12 − a1

∂bK

∂x1

p21 + a2
∂bK

∂x2
p22 − a2

∂bK

∂x1

)
.

Let {I1, ..., Im} be the partition of ΓN induced by the triangulation Th, i.e., each
Ii = K∩Γ̄N for some triangle K of Th and Γ̄N = ∪m

j=1Ij . Due to our previous hypotheses
on the triangulation Th, each Ii is contained in one side of the polygonal line Γ.

Let us finally set H
1
2
h = {αh ∈ H

1
2
00(ΓN ) : αh|Ij

∈ P1(Ij), j = 1, ..., m}.
The approximation space of M is then defined by Mh = L2

h ×Qh × (H
1
2
h )2.

Contrary to [2], the space Mh is equipped with the L2-norm, namely

‖((vh, θh), αh)‖M̃ := ‖vh‖+ ‖θh‖+ ‖αh‖ΓN .

The main reason is that we want to use non quasi-uniform meshes for which the
uniform inf-sup condition with the term ‖αh‖(H1/2(ΓN ))2 instead of ‖αh‖ΓN seems to be
difficult to prove.

Accordingly the discrete problem associated with the (continuous) mixed problem
(4) is: Find σh = (σh, ph) ∈ Σh, and (uh = (uh, ωh), ξh) ∈ Mh such that

{
A(σh, τh)+ B(τh, (uh, ξh)) = 0 ∀τh ∈ Σh,

B(σh, (vh, αh)) = F (vh, αh) ∀(vh, αh) ∈ Mh.
(5)

To get appropriated error estimates, we need to show that the discrete inf-sup con-
dition holds, as well as uniform coerciveness on the discrete kernel of B. For these
purposes, we use the BDM1 interpolation operator defined in [3, 14]. This allow us to
show the
Theorem 3.1 There exists β3 > 0 independent of h such that

sup
τh∈Σh,τh 6=0

B(τh, (vh, αh))
||τh||Σ

≥ β3||(vh, αh)||M̃ ,∀(vh, αh) ∈ Mh.

Lemma 3.2 The bilinear form A is uniformly coercive with respect to λ on

Vh = {τh ∈ Σh : B(τh, (vh, αh)) = 0, ∀(vh, αh) ∈ Mh} ,

in other words A(τh, τh) & ‖τh‖+ ‖qh‖,∀τh = (τh, qh) ∈ Vh.

This Lemma and Theorem 3.1 guarantee the existence and uniqueness of a solution
to problem (5).
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4 Some regularity results

Let us decompose Γ = ∪ne
j=1Γj , where each Γj is an open segment. Denote furthermore

by Sj the common vertex between Γj and Γj+1 (modulo ne) and by ωj the interior
opening of Ω at Sj . We will distinguish three kinds of vertices, namely the set SDD of
Dirichlet-Dirichlet vertices, in the sense that Sj belongs to SDD if and only if Γj and
Γj+1 are included into ΓD; similarly Sj belongs to the Neumann-Neumann set SNN if
and only if Γj and Γj+1 are included into ΓN ; and finally Sj belongs to the Dirichlet-
Neumann set SDN if and only if either Γj is included in ΓD and Γj+1 is included into
ΓN , or the converse. Later on, we will denote by (rj , θj) the polar coordinates centered
at the vertex Sj .

It is wellknown (see [9] or [8, 5]) that the weak solution of problem (2) presents
vertex singularities. To describe them, we need to introduce the following notations: to
each vertex Sj , we associate the following characteristic equation:





sin2(αωj) = ( λ+µ
λ+3µ )2α2 sin2 ωj if Sj ∈ SDD,

sin2(αωj) = α2 sin2 ωj if Sj ∈ SNN ,
sin2(αωj) = (λ+2µ)2−(λ+µ)2α2 sin2 ωj

(λ+µ)(λ+3µ) if Sj ∈ SDN .
(6)

Denote by Λj the set of complex roots of this equation. We denote by ν(α) the multi-
plicity of α ∈ Λj , it is wellknown that it is either 1 or 2.

The next result was shown in [9]:

Theorem 4.1 Assume that characteristic equation (6) has no root on the vertical line
<α = 1 and that f ∈ (L2(Ω))2. Then the weak solution u of problem (2) admits the
following decomposition

u = uR +
ne∑

j=1

∑

α∈Λj :<α∈]0,1[

rα
j

ν(α)−1∑

k=0

cj,α,k(ln rj)kϕj,α,k(θj), (7)

where uR belongs to (H2(Ω))2 is the regular part of u, cj,α,k ∈ C is a so-called coefficient
of singularity and ϕj,α,k is a smooth function (explicitely known, cf. [9]).

The above decomposition allows to show that u belongs to appropriated weighted
Sobolev spaces that we next define.

Definition 4.2 For any scalar function φ ∈ C0(Ω) such that φ(x) > 0 ∀x ∈ Ω \
{S1, ..., Sne}, and any m, k ∈ N, we define

Hm,k
φ (Ω) = {v ∈ Hm(Ω) : φDβv ∈ L2(Ω),∀β ∈ N2 : m < |β| ≤ m + k}.

Hm,k
φ (Ω) is a Hilbert space with the norm ||v||m,k;φ,Ω = (||v||2m,Ω+

∑
m<|β|≤m+k ||φDβv||2) 1

2

We also define the semi-norm: |v|m,k;φ,Ω = (
∑
|β|=m+k ||φDβv||2) 1

2 .

For all j ∈ {1, 2, ..., ne}, we now fix a non negative real number αj < 1 such that

αj > 1−<α, ∀α ∈ Λj : <α ∈]0, 1[.
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Corollary 4.3 Let the assumptions of Thereom 4.1 be satisfied. Let us fix φ ∈ C0(Ω)
be as in Definition 4.2 and such that φ = r

αj

j in a neighbourhood of the vertex Sj

for every j = 1, 2, · · · , ne. Then u ∈ (H1,1
φ (Ω))2 and consequently σ = 2µε(µ) ∈

(H0,1
φ (Ω))2×2, p = −λdivu ∈ H0,1

φ (Ω) and ω = 1
2 curl u ∈ H0,1

φ (Ω).

For further purposes, we need to give a meaning to the traces of functions in H0,1
φ (Ω),

namely we show the

Lemma 4.4 Let φ be a function like in Corollary 4.3. If w ∈ H0,1
φ (Ω), then for all

triangles K ∈ Th, it holds w|E ∈ L1(E), ∀E ∈ EK .

5 Error estimates

In this section, we take advantage of the previous results and some interpolation error
estimates to obtain convergence results. We first introduce a kind of Fortin operator
([7]):

Proposition 5.1 Let φ be a function like in Corollary 4.3. Then there exists an oper-
ator

Πh : Σ ∩ (H0,1
φ (Ω))2×2 ×H0,1

φ (Ω) −→ Σh

τ = (τ, q) −→ Πhτ = (τh, qh)

such that B(τ −Πhτ , (vh, αh))) = 0, ∀(vh, αh) ∈ Mh. (8)

Corollary 5.2 Under the assumptions of the previous proposition, we have

||τ −Πhτ || . ||(τ − qδ)− (τ∗h − qhδ)||+ ||q − qh||. (9)

We now need to define local weighted Sobolev spaces:

Definition 5.3 Let K be an arbitrary triangle in the plane and a vertex A of K. For
m = 0 or 1 and β ∈ [0, 1[, we will denote

Hm,1;β
A (K) = {ψ ∈ Hm(K); |x−A|βDαψ ∈ L2(K)∀α ∈ N2 : |α| = m + 1},

equipped with the norm ||ψ||m,1;β,K = (||ψ||2m,K + |ψ|2m,1;β,K)
1
2 and semi-norm

|ψ|m,1;β,K = (
∑
|α|=m+1 |||x−A|βDαψ||2K)

1
2 .

By Lemma 4.4, the trace of an element of H0,1;β
A (K) with β ∈ [0, 1[ is well defined

and is in L1(∂K). Thus given v ∈ [H0,1;β
A (K)]2, its Brezzi-Douglas-Marini interpolant

ρKv ∈ BDM1(K) = (P1(K))2 [3, p.125] is well defined by the relations:
∫

∂K

ρKv · np1ds =
∫

∂K

v · np1 ds, ∀p1 ∈ R1(∂K).

Using the so-called Piola transformation and Bramble-Hilbert arguments, Farhloul
and Paquet have shown in Proposition 4.12 from [7] the next result:

Lemma 5.4 Let (Th)h>0 be a regular family of triangulations of Ω. For any β ∈ [0, 1[,
and every K ∈ Th, it holds ||v − ρKv||K . h1−β

K |v|0,1;β,K ,∀v ∈ (H0,1;β
A (K))2.
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Direct consequences of this Lemma are the next global interpolation error estimates
under appropriate refinement conditions on the regular family of triangulations (Th)h>0

(see Theorem 4.13 and its Corollary in [7]):

Theorem 5.5 Let (Th)h>0 be a regular family of triangulations of Ω. We suppose that
(Th)h>0 satisfies the two following refinement rules:

1. If K is a triangle of Th admitting Sj as a vertex, then hK . h
1

1−αj , (10)

where αj has been defined in section 4.

2. If K is a triangle of Th admitting no Sj as a vertex, then hK . h inf
x∈K

φ(x), (11)

where φ is a function like in Corollary (4.3).

Then for every vector field v ∈ (H0,1
φ (Ω))2, it holds ||v−ρhv|| . h|v|0,1;φ,Ω, (12)

where ρhv denotes the BDM1 interpolant of v, i.e., for all K ∈ Th, (ρhv)|K = ρKv.

Similarly for every q ∈ H0,1
φ (Ω), it holds: ||q − P 1

hq|| . h|q|0,1;φ,Ω (13)

where we recall that P 1
h denotes the L2-orthogonal projection on Qh.

Corollary 5.6 Let (Th)h>0 be a regular family of triangulations of Ω satisfying the
refinement conditions (10) and (11). Then for every τ = (τ, q) ∈ (H0,1

φ (Ω))2×2 ×
H0,1

φ (Ω)
||τ −Πhτ || . h(|τ |0,1;φ,Ω + |q|0,1;φ,Ω). (14)

Lemma 5.7 Let (Th)h>0 be a regular family of triangulations of Ω satisfying the re-
finement conditions (10) and (11). For v ∈ H1,1

φ (Ω) ∩ H1
0,ΓD

(Ω), denote by Lhv its

P1-Lagrange interpolant in H
1
2
h , in the sense that Lhv is the unique element in H

1
2
h such

that Lhv(x) = v(x), for all nodal points x ∈ Γ̄N (which is meaningful). Then for all
triangle K ∈ Th having

an edge E included into Γ̄N , it holds ‖v − Lhv‖E . h
1/2
K h|v|1,1;φ,K . (15)

In particular, we clearly have ||v − Lhv||ΓN . h|v|1,1;φ,Ω. (16)

Using the previous interpolation error estimate, we can prove the next error estimate:

Theorem 5.8 Let (Th)h>0 be a regular family of triangulations of Ω satisfying the
refinement conditions (10) and (11). Let (σ, p), ((u, ω), ξ) be the unique solution of
problem (4) and let (σh, ph), ((uh, ωh), ξh) be the unique solution of problem (5). We
suppose that f ∈ (L2(Ω))2 and that the characteristic equation (6) (cf. Theorem 4.1)
has no root on the vertical line <(α) = 1 for each j = 1, 2, ..., ne. Then the next error
estimate holds

||σ − σh|| . (1 +
1
λ

)h(|u|1,1;φ,Ω + |p|0,1;φ,Ω), (17)

||u− uh||+ ||ω − ωh||+ ||ξ − ξh||ΓN
. (1 +

1
λ

)2h(|u|1,1;φ,Ω + |p|0,1;φ,Ω). (18)
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Proof: First we show that ||πh−σh|| . h(|u|1,1;φ,Ω + |p|0,1;φ,Ω). Whence, (17) follows
from this last estimate , (14) and triangle inequality. Next, we show that

||P 0
hu− uh||+ ||P 1

hw − wh||+ ||Lhξ − ξh||ΓN . (1 +
1
λ

)2h(|u|1,1;φ,Ω + |p|0,1;φ,Ω) (19)

Then, by standard scaling arguments, it holds ||u− P 0
hu|| . h|u|1,Ω,

where P 0
h is the standard L2-orthogonal projection of L2

h.
Therefore, (18) follows from this last estimate, (14), (16) and (19).
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