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RÉSUMÉ. Le problème de l’assimilation variationnelle de données pour un modèle non linéaire
d’évolution est formulé comme un problème de contrôle optimal par rapport à la condition initiale. En
utilisant le Hessien de la fonction coût et l’adjoint au second ordre, on dérive une equation gouver-
nant la propagation des statistiques d’erreur des entrées du problème vers la condition initiale. La
dépendance de l’opérateur de covariance de l’erreur d’analyse est exprimé en fonction de celui de la
covariance des erreurs des entrées du modèle (erreur d’ébauche et erreur d’observation). Des algo-
rithmes sont proposés pour la construction de la covariance de l’analyse à partir de la covariance des
entrées.

ABSTRACT. The problem of variational data assimilation for a nonlinear evolution model is formulated
as an optimal control problem to find the initial condition function. Based on the Hessian of the cost
functional and the second-order adjoint techniques, the equation for the error of the optimal solution
(analysis) is derived through the statistical errors of the input data. The covariance operator of the
analysis error is expressed through the covariance operators of the input errors (background and
observation errors). Numerical algorithms are developed to construct the covariance operator of the
analysis error using the covariance operators of the input errors.

MOTS-CLÉS : l’assimilation de données, contrôle optimal, l’erreur d’analyse, le Hessien, l’opérateur
de covariance
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1. Introduction
The methods of data assimilation were designed to combine models and observational

data as sources of information. From the mathematical point of view, these problems may
be formulated as optimal control problems (e.g. [5]). A major advantage of this technique
is the derivation of an optimality system which contains all the available information. In
practice the optimality system includes background errors and observation errors. The
error of the optimal solution (analysis) may be derived through the errors of the input
data using the Hessian of the cost functional and the second-order adjoint techniques. For
deterministic case it was done in [6]. Here we present the developments of the ideas of
[6] for the case of statistical errors.

2. Statement of the problem
Consider the mathematical model of a physical process that is described by the evolu-

tion problem {
∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
(2.1)

whereϕ = ϕ(t) is the unknown function belonging for any t to a Hilbert spaceX , u ∈ X ,
F is a nonlinear operatormappingX intoX . Let Y = L2(0, T ; X), ‖·‖Y = (·, ·)1/2

Y , f ∈
Y . Suppose that for given u ∈ X, f ∈ Y there exists a unique solution ϕ ∈ Y to (2.1).
Let us introduce the functional

S(u) =
1
2
(V1(u − u0), u − u0)X +

1
2
(V2(Cϕ− ϕobs), Cϕ− ϕobs)Yobs , (2.2)

where α = const ≥ 0, u0 ∈ X is a prior initial-value function (background state), ϕ obs ∈
Yobs is a prescribed function (observational data), Yobs is a Hilbert space (observation
space), C : Y → Yobs is a linear bounded operator, V1 : X → X and V2 : Yobs → Yobs

are symmetric positive definite operators.
Consider the following data assimilation problem with the aim to identify the initial

condition : find u ∈ X and ϕ ∈ Y such that they satisfy (2.1), and on the set of solutions
to (2.1), the functional S(u) takes the minimum value, i.e.






∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
S(u) = inf

v
S(v).

(2.3)

The necessary optimality condition reduces the problem (2.3) to the following system [7],
[1] : {

∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
(2.4)

{
−∂ϕ∗

∂t − (F ′(ϕ))∗ϕ∗ = −C∗V2(Cϕ− ϕobs), t ∈ (0, T )
ϕ∗∣∣

t=T
= 0,

(2.5)

V1(u − u0) − ϕ∗∣∣
t=0

= 0 (2.6)



with the unknowns ϕ,ϕ∗, u, where (F ′(ϕ))∗ is the adjoint to the Frechet derivative of F ,
and C∗ is the adjoint to C defined by (Cϕ,ψ)Yobs = (ϕ, C∗ψ)Y , ϕ ∈ Y, ψ ∈ Yobs. We
assume that the system (2.4)–(2.6) has a unique solution.
Suppose that u0 = ū + ξ1, ϕobs = Cϕ̄ + ξ2, where ξ1 ∈ X, ξ2 ∈ Yobs,, and ϕ̄ is the

("true") solution to the problem (1.1) with u = ū :
{

∂ϕ̄
∂t = F (ϕ̄) + f, t ∈ (0, T )

ϕ̄
∣∣
t=0

= ū.
(2.7)

The functions ξ1, ξ2 may be treated as the errors of the input data u0, ϕobs (background
and observation errors, respectively). For V1 and V2 in (2.2), one usually has V1 =
V −1

ξ1
, V2 = V −1

ξ2
, where Vξi is the covariance operator of the corresponding error ξ i, i =

1, 2.
Having supposed that the solution of the problem (2.4)–(2.6) exists, we will study the

influence of the errors ξ1, ξ2 on the optimal solution u and develop the theory presented
in [6] for the case of statistical errors. We derive the covariance operator of the optimal
solution error through the covariance operators of the input errors. Numerical algorithms
are developed to construct the covariance operator of the optimal solution error using the
covariance operators of the input errors.

3. Error analysis via Hessian
The system (2.4)–(2.6) with the three unknowns ϕ,ϕ∗, u may be treated as an

operator equation of the form
F(U, Ud) = 0, (3.1)

where U = (ϕ,ϕ∗, u), Ud = (u0, ϕobs, f), and the action of F is defined by

F(U, Ud) =






∂ϕ
∂t − F (ϕ) − f,

ϕ
∣∣
t=0

−u,

−∂ϕ∗

∂t − (F ′(ϕ))∗ϕ∗ + C∗V2(Cϕ− ϕobs),
ϕ∗∣∣

t=T
,

V1(u − u0) − ϕ∗
∣∣
t=0

.

Thus, F(U, Ud) is linear in u, u0, ϕobs, f . The following equality holds for the "exact
solution" ("true state") :

F(Ū , Ūd) = 0, (3.2)

with Ū = (ϕ̄, ϕ̄∗, ū), Ūd = (ū, Cϕ̄, f), ϕ̄∗ = 0. The system (3.2) is the necessary
optimality condition of the following minimization problem : find u and ϕ such that






∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
S̄(u) = inf

v
S̄(v),

where

S̄(u) =
1
2
(V1(u − ū), u − ū)X +

1
2
(V2(Cϕ − Cϕ̄), Cϕ− Cϕ̄)Yobs .



From (3.1)–(3.2), we get
F(U, Ud) −F(Ū , Ūd) = 0. (3.3)

Let δU = U − Ū , δUd = Ud − Ūd. Then (3.3) gives

F(Ū + δU, Ūd + δUd) −F(Ū , Ūd) = 0. (3.4)

From (3.4), for regularF , there exists Ũ = (ϕ̃, ϕ̃∗, u) such that ϕ̃ = ϕ̄+τ(ϕ− ϕ̄), ϕ̃∗ =
ϕ̄∗ + τ(ϕ∗ − ϕ̄∗), τ ∈ R, and

F ′
U (Ũ , Ud)δU + F ′

Ud
(Ũ , Ud)δUd = 0, (3.5)

where F ′
U ,F ′

Ud
are the Gateâux derivatives with respect to U and Ud.

Let δϕ = ϕ − ϕ̄, δu = u − ū ; then δU = (δϕ, ϕ∗, δu), δUd = (ξ1, ξ2, 0). By
calculating the derivatives F ′

U ,F ′
Ud
, it is easily seen that equation (3.5) is equivalent to

the system : {
∂δϕ
∂t − F ′(ϕ̃)δϕ = 0, t ∈ (0, T ),

δϕ|t=0 = δu,
(3.6)

{
−∂ϕ∗

∂t − (F ′(ϕ̃))∗ϕ∗ = (F ′′(ϕ̃)δϕ)∗ϕ̃∗ − C∗V2(Cδϕ − ξ2),
ϕ∗∣∣

t=T
= 0,

(3.7)

V1(δu − ξ1) − ϕ∗|t=0 = 0. (3.8)

The problem (3.6)–(3.8) is a linear data assimilation problem ; for fixed ϕ̃, ϕ̃ ∗ it is the
necessary optimality condition to the following minimization problem : find u and ϕ such
that 





∂ϕ
∂t − F ′(ϕ̃)ϕ = 0, t ∈ (0, T )

ϕ
∣∣
t=0

= u
S1(u) = inf

v
S1(v),

(3.9)

where

S1(u) =
1
2
(V1(u− ξ1), u− ξ1)X +

1
2
(V2(Cϕ− ξ2), Cϕ− ξ2)Yobs −

1
2
(F ′′(ϕ̃)ϕϕ, ϕ̃∗)Y .

(3.10)
Consider the Hessian H of the functional (3.10) ; it is defined by the successive solu-

tions of the following problems :
{

∂ψ
∂t − F ′(ϕ̃)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(3.11)

{
−∂ψ∗

∂t − (F ′(ϕ̃))∗ψ∗ = (F ′′(ϕ̃)ψ)∗ϕ̃∗ − C∗V2Cψ, t ∈ (0, T )
ψ∗∣∣

t=T
= 0,

(3.12)

Hv = V1v − ψ∗|t=0. (3.13)

Note that for ϕ̃ = ϕ, ϕ̃∗ = ϕ∗, where ϕ,ϕ∗ are the solutions of (2.4)–(2.6), the operator
H coincides with the Hessian of the original functional S(u). (In this case the equation
(3.5) is satisfied with an accuracy of the second order in δU for regular F .)



Below we introduce two auxiliary operators R1, R2. Let R1 = V1. Let us introduce
the operator R2 : Yobs → X acting on the functions g ∈ Yobs according to the formula

R2g = θ∗|t=0, (3.14)

where θ∗ is the solution to the adjoint problem
{

−∂θ∗
∂t − (F ′(ϕ̃))∗θ∗ = V2C∗g, t ∈ (0, T )

θ∗
∣∣
t=T

= 0.
(3.15)

>From (3.11)–(3.15)we conclude that the system (3.6)–(3.8) is equivalent to the single
equation for δu :

Hδu = R1ξ1 + R2ξ2. (3.16)

The HessianH acts inX as a self-adjoit operator with domain of definitionD(H)=X .
We will suppose that H is positive definite, and hence invertible.
As follows from (3.16), the influence of the errors ξ1, ξ2 on the value of the error δu

of the optimal solution is determined by the operatorsH −1R1, H−1R2, respectively. The
values of the norms of these operators may be considered as sensitivity coefficients : the
less is the norm of the operator H−1Ri, the less impact on δu is given by the corres-
ponding error ξi. This criteria was used for deterministic error analysis in [4], [6]. Here,
assuming the statistical structure of the errors ξ1, ξ2, we will derive the covariance opera-
tor of the optimal solution error through the covariance operators of the input errors and
develop numerical algorithms to construct the covariance operator of the optimal solution
error using the covariance operators of the input errors.

4. Covariance operators
The analysis-error covariances through the Hessian in variational data assimilation

were considered by many authors (e.g. [9, 10, 8, 2, 11, 3]) usually for a linearized model
(so-called tangent linear hypothesis). We will use the equation (3.16) to derive the formu-
las for the covariance operator of the optimal solution errors involving the Hessian of the
functional S(u) of the original nonlinear data assimilation problem (2.3).
Consider the error equation (3.16). Under the hypotheses thatH is invertible, we may

rewrite it as
δu = T1ξ1 + T2ξ2, (4.1)

where Ti=H−1Ri, T1 : X→X, T2 : Yobs→X.
Below we suppose that in (3.16) ϕ̃ = ϕ, ϕ̃∗ = ϕ∗, where ϕ,ϕ∗ are the solutions

of the original optimality system (2.4)–(2.6). As we have mentioned above, in this case
the operator H coincides with the Hessian of the original functional S(u) and it can be
defined through ϕ,ϕ∗, u by the successive solutions of the following problems (for a
given v ∈ X) : {

∂ϕ
∂t = F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
(4.2)

{
−∂ϕ∗

∂t − (F ′(ϕ))∗ϕ∗ = −C∗V2(Cϕ− ϕobs), t ∈ (0, T )
ϕ∗

∣∣
t=T

= 0,
(4.3)



{
∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(4.4)

{
−∂ψ∗

∂t − (F ′(ϕ))∗ψ∗ = (F ′′(ϕ)ψ)∗ϕ∗ − C∗V2Cψ, t ∈ (0, T )
ψ∗

∣∣
t=T

= 0,
(4.5)

Hv = V1v − ψ∗|t=0. (4.6)

We suppose that the errors ξ1, ξ2 are normally distributed, unbiased, and mutually
uncorrelated. By Vξi we denote the covariance operator of the corresponding error ξ i, i =
1, 2, i.e. Vξ1 · = E[(·, ξ1)Xξ1], Vξ2 · = E[(·, ξ2)Yobsξ2], where E is the expectation. By
Vδu we denote the covariance operator of the optimal solution (analysis) error : V δu· =
E[(·, δu)Xδu]. From (4.1) we get

Vδu = T1Vξ1T
∗
1 + T2Vξ2T

∗
2 . (4.7)

To find the covariance operatorVδu, we need to construct the operators TiVξiT
∗
i , i = 1, 2.

Consider the operator T1Vξ1T
∗
1 . Since T1 = H−1R1 = H−1V1 = T ∗

1 , we have
T1Vξ1T

∗
1 = H−1V1Vξ1V1H−1.Moreover, if V1 = V −1

ξ1
, then

T1Vξ1T
∗
1 = H−1V1H

−1 = H−1V −1
ξ1

H−1. (4.8)

Thus, the algorithm for findingw = T1Vξ1T
∗
1 v, v ∈ X, consists in the the following :

1) solve the equationHp = v;
2) compute V1p ;
3) solve the equationHw = V1p.

Consider the operator T2Vξ2T
∗
2 . Since T2 = H−1R2, then

T2Vξ2T
∗
2 = H−1R2Vξ2R

∗
2H

−1.

To determine R∗
2, consider the inner product (R2g, p)X , g ∈ Yobs, p ∈ X . From

(3.14)–(3.15),

(R2g, p)X = (θ∗|t=0, p)X = (C∗V2g, φ)Y = (g, R∗
2p)Yobs ,

where R∗
2p = V2Cφ, and φ is the solution to the problem

{
∂φ
∂t − F ′(ϕ)φ = 0, t ∈ (0, T ),

φ|t=0 = p.
(4.9)

Thus, the operator T2Vξ2T
∗
2 is defined by successive solutions of the following pro-

blems (for a given v ∈ X) :

Hp = v, (4.10)
{

∂φ
∂t − F ′(ϕ)φ = 0, t ∈ (0, T ),

φ|t=0 = p,
(4.11)

{
−∂θ∗

∂t − (F ′(ϕ))∗θ∗ = C∗V2Vξ2V2Cφ, t ∈ (0, T )
θ∗

∣∣
t=T

= 0,
(4.12)



Hw = θ∗
∣∣
t=0

, (4.13)

then
T2Vξ2T

∗
2 v = w. (4.14)

If V2 = V −1
ξ2
, then C∗V2Vξ2V2C = C∗V2C and from (4.11)–(4.12) we obtain that

θ∗
∣∣
t=0

= H0p − V1p,

where H0 is the Hessian of the tangent linear approximation, that is, the Hessian of the
functional S(u) when the nonlinear model in (2.3) is replaced by its tangent linear, and it
is defined by successive solutions of the following problems (for a given v ∈ X) :

{
∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(4.15)

{
−∂ψ∗

∂t − (F ′(ϕ))∗ψ∗ = −C∗V2Cψ, t ∈ (0, T )
ψ∗∣∣

t=T
= 0,

(4.16)

H0v = V1v − ψ∗|t=0. (4.17)

Then we get
R2Vξ2R

∗
2 = H0 − V1

and
T2Vξ2T

∗
2 = H−1(H0 − V1)H−1. (4.18)

Thus, the algorithm for findingw = T2Vξ2T
∗
2 v, v ∈ X, consists in the the following :

1) solve the equationHp = v;
2) compute (H0 − V1)p ;
3) solve the equationHw = (H0 − V1)p.

>From (4.8), (4.18) it follows the result for Vδu :

Vδu = T1Vξ1T
∗
1 + T2Vξ2T

∗
2 = H−1H0H

−1. (4.19)

The last formula gives the analysis-error covariance operator through the Hessian H of
the original nonlinear data assimilation problem and the HessianH 0 of the tangent linear
approximation. If the tangent linear hypothesis is valid, then omitting F ′′(ϕ) in (4.5), we
haveH = H0, and the right-hand side of (4.19) gives

H−1H0H
−1 = H−1

0 H0H
−1
0 = H−1

0 ,

i.e. the covariance operator is the inverse Hessian in accordance with the well-known
results (e.g. [9, 8]).
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