
Interoperability test generation : formal
definitions and algorithm

Alexandra DESMOULIN — César VIHO

IRISA/Université de Rennes I
Campus de Beaulieu
35042 Rennes Cedex, FRANCE
{Alexandra.Desmoulin,Cesar.Viho}@irisa.fr

RÉSUMÉ. Le but de cet article est de fournir une méthode formelle pour la génération de tests
d’interopérabilité. Contrairement aux travaux précédents, cette étude prend en compte les blocages
des implémentations qui peuvent être observés durant un test d’interopérabilité. Ceci est réalisé via la
notion de critères d’interopérabilité, qui donnent des définitions formelles des notions d’interopérabilité
existantes. Il est tout d’abord prouvé que la gestion des blocages améliore la détection de la non-
interopérabilité. L’équivalence de deux des critères est aussi prouvée permettant l’introduction d’une
nouvelle méthode de génération de tests d’interopérabilité. Cette méthode permet d’éviter le problème
d’explosion du nombre d’états existant lors de l’utilisation des approches classiques.

ABSTRACT. This study is aimed at providing a formal method for interoperability test generation.
Contrary to previous work, this study takes into account quiescence of implementations that may
occur during interoperability testing. This is done through the notion of interoperability criteria that
give formal definitions of the different existing pragmatic interoperability notions. It is first proved that
quiescence management improves non-interoperability detection. Two of these interoperability criteria
are proved equivalent leading to a new method for interoperability test generation. This method avoids
the well-known state explosion problem that may occur when using existing classical approaches.

MOTS-CLÉS : Interopérabilité, test, critère, génération de tests, blocage

KEYWORDS : Interoperability, test, criterion, test generation, quiescence

Volume 1 – 2006, pages 1 à 8 – CARI’2006



2 CARI’2006 – Volume 1 – 2006

1. Introduction
Interoperability testing is still considered as a pragmatic issue. Indeed, it requires

configurations of tested systems, specific parameterizations, etc. Results obtained may
depend on these operations. Nevertheless, the same arguments applied for a long time
to conformance testing. Yet, one can observe now that studies on formal approach for
conformance testing has increased the knowledge in this area [1]. It allows automatic
conformance test generation (TGV [2] for example) and improves quality of generated
test cases. Despite a large literature on the interest of providing a formal approach for
interoperability testing [3, 4], only few tentative have been proposed [5, 6].
The aims of the study presented here are double. First, we give formal definitions of inter-
operability testing. Contrary to a previous work [7], these definitions, called interoperabi-
lity criteria (iop criteria in the following) manage quiescence. The second contribution of
this work is a new method to generate automatically interoperability test cases. It uses a
theorem proving the equivalence between two iop criteria and avoids the construction of
the specification interaction that may lead to the well-known state-explosion problem [3].
The paper is structured as follows. Section 2 gives the considered interoperability testing
architectures. Models and the formal background used in this paper are in Section 3. The
iop criteria are defined in Section 4. In Section 5, the proposed method and associated
algorithms for interoperability test case generation are described. Results obtained are
illustrated with a simple example. Conclusion and future work are in section 6.

2. One-to-one interoperability testing architecture

LT2

UT1

UP1

LP2

UI2

IUT2

LI2

IUT1

UI1

LT1

LP1

LI1

UT2

UP2

SUT

System)
TS (Test

T1 T2

Figure 1. Interoperability testing architecture

In this study, we consider the one-to-one interoperability context (testing architecture
in figure 1) : the System Under Test (SUT) is composed of two Implementation Under
Test (IUT). The interaction between the two IUT is asynchronous (cf. Section 3.2).
There are two kind of interfaces : the Lower Interfaces LIi and the Upper Interfaces UIi.
The interfaces LIi, used for the interaction of the two IUT, are only observable but not
controllable. A tester (LTi) connected to such interfaces can only observe the events but
not send a stimuli to the interfaces. The interfaces UIi are the interfaces through which the
IUT communicates with its environment. They are observable and also controllable by the
tester UTi. Depending on the access to the different interfaces, different architectures can
be distinguished. For example, the interoperability testing architecture is called unilateral
if only the interfaces of one IUT (of the two interacting IUT) are accessible, bilateral if
the interfaces of both IUT are accessible but separately, or global if the interfaces of both
IUT are accessible with a global view.

CARI’2006



Interoperability test generation 3

3. Formal background

3.1. IOLTS model
The well-known IOLTS (Input-Output Labeled Transition System) model [8] will be

used to model specifications and to define interoperability criteria.
Definition 3.1 An IOLTS is a tuple M = (QM ,ΣM ,∆M , qM

0 ) where
• QM is the set of states of the system and qM

0 ∈ QM is the initial state.
• ΣM denotes the set of observable (input and/or output) events on the system interfaces.
p?m stands for an input and p!m for an output where p is the interface and m the message.
• ∆M ⊆ QM × (ΣM ∪ τ)×QM is the transition relation (τ 6∈ ΣM is an internal event).

ΣM can be decomposed : ΣM = ΣM
U ∪ΣM

L, where ΣM
U (resp. ΣM

L) is the set of messages
exchanged on the upper (resp. lower) interface. ΣM can also be decomposed to distinguish
input (ΣM

I ) and output (ΣM
O) messages. Let us consider an IOLTS M , σ ∈ (ΣM)∗, q ∈ QM :

• Γ(q) is the set of observable events from q, and out(q) the set of outputs from q.
• q after σ is the set of states which can be reached from q by the sequence of actions σ.
By extension, all the states reached from the initial state of the IOLTS M is (qM

0 after σ),
noted by (M after σ). In the same manner, Out(M, σ) = out(M after σ).
• Traces(q) is the set of possible observable traces from q. Traces(M) = Traces(qM

0 ).
• if we consider a link l between two IUT i and j, µ̄= li!a if µ = lj?a and µ̄ = li?a if µ =
lj !a. For internal events, τ̄ = τ .
Three situations lead to quiescence of a system : deadlock (a state after which no event

is possible), outputlock (a state after which only transitions labeled with input exist) and
livelock (a loop of internal events). Quiescence is modeled by δ and treated as an obser-
vable output event. The obtained IOLTS is called suspensive IOLTS [1] and noted ∆(M).
Figure 2 gives an example of two specifications using the IOLTS model. U?A corres-
ponds to a request from the upper layer of S2. Then, S1 and S2 may exchange some
messages via their lower layer. The resulting response to the request can be either positive
(output on the upper interface U !R) or negative (output U !N ). Quiescence is possible and
modeled on these specifications (see in states 0 and 3 of S1, 0, 3 and 4 of S2).

6

4 5

3

4

5 6

2

0

l?a

2

3

l!dl!c

l?b

0

1

U?A

δ

δ

δ

S S1 2

U!R

l?r
l?n

U!N
l!bl!a δ

l?d

l!r l!n

U!R

U!N

l?c

δ

Figure 2. Specifications S1 and S2

3.2. Operations : interaction and projection
Interoperability testing concerns the interaction of two or more implementations. To

provide a formal definition of interoperability, we need to model the different interactions.

To calculate the interaction of two IOLTS with quiescence management, we calculate
first the suspensive IOLTS ∆(M1) and ∆(M2), and then we construct the interaction of
∆(M1) and ∆(M2), using rules of the synchronous interaction [9]. Quiescence is preser-
ved and δ(i) (resp. δ) corresponds to quiescence of Mi (resp. of the two IOLTS).

CARI’2006



4 CARI’2006 – Volume 1 – 2006

As the interaction between the two IUT is asynchronous in the considered interoperability
testing architecture, we also need to model asynchronous interaction. As in [8], we can
model the asynchronous environment with FIFO queues. The asynchronous transforma-
tion applied to a specification S gives as result the IOLTS A(S) representing the behavior
of S in an asynchronous environment. As consequence, the asynchronous interaction of
M1 and M2 is the synchronous interaction of A(M1) and A(M2), noted M1‖AM2.

In interoperability testing, we usually need to observe some specific events of an IUT.
The IUT, reduced to the expected messages, can be obtained by a projection of the IOLTS
representing the whole behavior of the implementation on a set (called X in the following
and used to select the expected events). This is noted by M/X and is obtained by hiding
events (replacing by τ -transitions) that do not belong to X, followed by determinization.

3.3. Model of an implementation : iop-input completion
As usual in the black-box testing context, we need to model implementations, even

if their behaviors are unknown. As described in figure 1, the two IUT interact asynchro-
nously and testers are connected to their interfaces. But these testers can not differentiate
events received by an IUT from events effectively treated. To model this behavior, we
choose to complete any IUT with inputs corresponding to the output alphabet of the other
IUT specification. These transitions lead the IOLTS into an error state. It is a deadlock
state. On the upper interfaces, the IUT interacts directly with the tester (like in a confor-
mance testing context). Thus, for events on the upper interfaces, the input-completion of
the IUT corresponds to the input completion made for conformance testing. In the follo-
wing, the IUT are considered iop-input completed with quiescence modeled.

4. Interoperability criteria
According to the different possible testing architecture (see Section 2), different no-

tions of interoperability can be used [7]. In this section, we introduce interoperability
notions called interoperability (iop) criteria. Thanks to quiescence management, these
criteria detect more non-interoperability cases than the “interoperability relations” de-
fined in [7]. Moreover, we prove the equivalence between the most commonly used in
practice iop criterion iopG and the so called bilateral iop criterion iopB. We will describe
here the criteria considering events on both kinds of interface.
The unilateral total iop criterion says that after a suspensive trace of S1 observed during
the (asynchronous) interaction of the implementations, all outputs and quiescence obser-
ved in I1 are foreseen in S1. Formally : ∀σ1 ∈ Traces(∆(S1)), ∀σ ∈ Traces(S1‖AS2),
σ/ΣS1 = σ1 ⇒ Out((I1‖AI2)/ΣS1 , σ1) ⊆ Out(∆(S1), σ1).
The bilateral total iop criterion is verified iff both unilateral total criteria are verified.

Definition 4.1 (The bilateral iop criterion iopB) Let I1, I2 ∈ IOLT S two IUT imple-
menting respectively S1, S2 ∈ IOLT S. I1 iopB I2 =∆

∀σ1 ∈ Traces(∆(S1)), ∀σ ∈ Traces(S1‖AS2), σ/ΣS1 = σ1 ⇒
Out((I1‖AI2)/ΣS1 ,σ1) ⊆ Out(∆(S1),σ1)

and ∀σ2 ∈ Traces(∆(S2)), ∀σ′ ∈ Traces(S2‖AS1), σ/ΣS2 = σ2 ⇒
Out((I2‖AI1)/ΣS2 ,σ2) ⊆ Out(∆(S2), σ2).

The global total iop criterion says that two implementations are considered interoperable
if, after a suspensive trace of the asynchronous interaction of the specifications, all outputs
and quiescence observed during the (asynchronous) interaction of the implementations are
foreseen in the specifications.

CARI’2006



Interoperability test generation 5

Definition 4.2 (The global iop criterion iopG) Let I1, I2 ∈ IOLT S two IUT imple-
menting respectively S1, S2 ∈ IOLT S.

I1 iopG I2 =∆ ∀σ ∈ Traces(S1‖AS2), Out(I1 ‖AI2, σ) ⊆ Out(S1‖AS2, σ)

Comparisons between iop criteria are developed in [9]. The most important result is
the following theorem 4.1 stating that iopG and iopB are equivalent. This theorem is
proved with help of three intermediate lemmas (where M1 and M2 are two IOLTS).

Theorem 4.1 I1 iopG I2 ⇔ I1 iopB I2

Lemma 4.1 Let σ ∈ Traces(M1‖SM2),
Out(M1‖AM2, σ) = Out(∆(M1), σ/ΣM1) ∪ Out(∆(M2), σ/ΣM2).

Proof : 1) Let (q1, q2) ∈ [(M1‖AM2)afterσ] and a ∈ Out(M1‖AM2, σ). According to
the interaction definition, either a ∈ ΣM1 ∪ {δ, δ(1)} (i.e. a ∈ Out(∆(M1), σ/ΣM1)) or
a ∈ ΣM2 ∪ {δ, δ(2)} (i.e. a ∈ Out(∆(M2), σ/ΣM2)).
⇒ Out(M1‖δM2, σ) ⊆ Out(∆(M1), σ/ΣM1) ∪ Out(∆(M2), σ/ΣM2).
2) In the other sense, it is easy to see that : Out(M1‖AM2, σ) ⊆ Out(∆(M1), σ/ΣM1)
∪ Out(∆(M2), σ/ΣM2). ♦

Lemma 4.2 ((M1‖AM2)/ΣM1)‖A((M2‖AM1)/ΣM2) = M1‖AM2.

Proof : 1) Let σ1 ∈ Traces((M1‖AM2)/ΣM1), σ2 ∈ Traces((M2‖AM1)/ΣM2), and
σ = σ1‖Aσ2 ∈ Traces(((M1‖AM2)/ΣM1)‖A((M2‖AM1)/ΣM2)). We have : σ1 ∈
Traces(∆(M1)) and σ2 ∈ Traces(∆(M2)). Thus, σ = σ1‖Aσ2 ∈ Traces(M1‖AM2).
2) Let σ ∈ Traces(M1‖AM2) such that σ = σ1‖Aσ2 with σ1 ∈ Traces(∆(M1)) and
σ2 ∈ Traces(∆(M2)). We have σ1 = σ/ΣM1 and σ2 = σ/ΣM2 .
Thus σ1 ∈ Traces((M1‖AM2/ΣM1)), σ2 ∈ Traces((M2‖AM1/ΣM2))
and σ = σ1‖Aσ2 ∈ Traces(((M1‖AM2)/ΣM1)‖A((M2‖AM1)/ΣM2)). ♦

Lemma 4.3 Let σ1 ∈ Traces(∆(M1)), σ ∈ Traces(M1‖AM2) and σ1 = σ/ΣM1 .
Out((M1‖AM2)/ΣM1 , σ1) ⊆ Out(∆(M1), σ1).

Proof : (M1‖AM2)/ΣM1 is an IOLTS composed of events from Σ(M1‖AM2)/SigmaM1∪
{δ} ⊆ ΣM1 ∪ {δ}. ♦

Proof : (of the theorem 4.1) 1) Let us prove first that I1 iopB I2 ⇒ I1 iopG I2.
Let σ ∈ Traces(S1‖AS2), σ1 ∈ Traces(∆(S1)) such that σ1 = σ/ΣS1 , σ2 ∈ Traces(
∆(S2)) such that σ2 = σ/ΣS2 . Thus, Out((I1‖AI2)/ΣS1 , σ/ΣS1) ⊆ Out(∆(S1), σ/ΣS1)
and Out((I2‖AI1)/ΣS2 , σ/ΣS2) ⊆ Out(∆(S2), σ/ΣS2).
Using the lemma 4.1, Out[((I1‖AI2)/ΣS1‖A(I2‖AI1)/ΣS2), σ] ⊆ Out(S1‖AS2, σ).
With the lemma 4.2, Out(I1‖AI2, σ) ⊆ Out(S1‖AS2, σ). That means I1 iopG I2.
2) Let us prove now that I1 iopG I2 ⇒ I1 iopB I2.
Let I1, I2, S1, S2 such that I1 iopG I2. Let σ1 ∈ Traces(∆(S1)) such that σ1 = σ/ΣS1

with σ ∈ Traces(S1‖AS2). Using the definition of I1 iopG I2, we have : Out(I1‖AI2, σ) ⊆
Out(S1‖AS2, σ). Projecting this inclusion on ΣS1 gives
Out((I1‖AI2)/ΣS1 , σ1) ⊆ Out( (S1‖AS2) /ΣS1 , σ1)
Using the lemma 4.3, Out((I1‖AI2)/ΣS1 , σ1) ⊆ Out(∆(S1), σ1). And using the fact
that iopG is symmetrical, we have also I1 iopG I2 ⇒Out((I2‖AI1)/ΣS2 , σ2) ⊆Out(∆(S2),
σ2). That means I1 iopG I2 ⇒ I1 iopB I2. ♦

CARI’2006



6 CARI’2006 – Volume 1 – 2006

5. Interoperability test generation

5.1. Interoperability test generation : some generalities
The goal of an interoperability test generation algorithm is to generate interoperability

Test Cases (TC) that can be executable on the SUT composed of the interacting IUT. Data
used to generate test cases are the specifications and a test purpose. A test purpose TP is a
particular property to be tested. It is defined with an incomplete sequence of actions that
have to be observed or sent to the SUT. It supposes that any sequences of actions foreseen
in the specification may occur between two consecutive actions of a test purpose.
In the tester point of view, two kinds of events are possible during conformance tests :
sending a stimuli to the IUT or receiving an input. In interoperability testing, these events
are possible only on the upper interfaces of the IUT. The main difference is that it is also
possible to observe messages exchanged on the lower interfaces.
An iop test case TC will be represented by an extended IOLTS called T-IOLTS (Testing-
IOLTS). A T-IOLTS TC is defined by TC = (QTC , ΣTC , ∆TC , qTC

0 ). {PASS, FAIL,
INC} ⊆ QTC are trap states representing interoperability verdicts. ΣTC ⊆ {µ|µ̄ ∈
ΣS1

U ∪ΣS2

U } ∪ {?(µ)|µ ∈ ΣS1

L ∪ΣS2

L }. ?(µ) denotes the observation of the message µ on
a lower interface. ∆TC is the transition function. The execution of an iop test case TC on
SUT (I1‖AI2) gives a verdict : verdict(TC, SUT ) ∈ {PASS, FAIL, INC}. The iop
verdict PASS means that no interoperability error was detected, FAIL means that the iop
criterion is not verified, and INC (for Inconclusive) that the behavior of the SUT seems
valid but it is not the purpose of the test case.
In the classical approach based on a criteria like iopG (see figure 3(a)), the test generation
algorithm begins with the construction of the asynchronous interaction S1 ‖A S2. Then
S1 ‖A S2 is composed with the TP. The consistency of TP is checked in parallel and
TC is generated. Yet, the construction of S1 ‖A S2 can cause the well-known state-space
explosion, as building S1 ‖A S2 is exponential in the number of states of S1 and S2

and the FIFO queues size. Thus, interoperability test generation based on the global iop
criterion may be impossible even for small specifications.

(S , S )1 2
(S , S )1 2

TPS1
S 1

Conformance test
generation algorithm

Conformance test
generation algorithm

TPS 2
S 2

TC1 TC2(a)
Approach based on a global interoperability criteria

(b)
Approach based on a bilateral interoperability criteria

TP TP

TC

S 1  and  S 2 : algorithm D
Derivation of TP into events of

Iop Test Generation algorithm

with calculation of S  ||   S 21 A

Figure 3. Approaches for interoperability test generation

5.2. Method based on the bilateral iop criterion iopB

The equivalence of iopB and iopG (cf. theorem 4.1) suggests to study a method for
iop test case generation based on iopB. Let us consider an iop test purpose TP . The idea
is to derive “unilateral test purposes” TPSi

from TP . Each TPSi
contains only events of

Si and represents TP in the point of view of Si. The second step is to use a conformance

CARI’2006



Interoperability test generation 7

test generation tool F such that F : (S1, TPS1
) → TC1 and F : (S2, TPS2

) → TC2.
According to the theorem 4.1, verdict(TC, I1 ‖A I2) = verdict(TC1, I1 ‖A I2) ∧
verdict(TC2, I1 ‖A I2). The rules for the combination of these verdicts to obtain the final
iopB verdict are : PASS ∧ PASS = PASS, PASS ∧ INC = INC, INC ∧ INC =
INC, and FAIL ∧ (FAIL ∨ INC ∨ PASS) = FAIL.
1- The first step of the algorithm consists in deriving TPS1

and TPS2
from TP . Indeed,

for TP = µ1...µn−1, any traces foreseen in the specifications may occur to consecutive
actions µi and µi+1. The way to derive TPS1

and TPS2
from TP is described in the

following algorithm (see figure 4). If all the events described in TP are on the lower in-
terfaces, the algorithm is very simple. If TP contains an event µi on the upper interfaces,
this algorithm finds a path between µi−1 (or µ̄i−1) and µi in the interacting specification.

In figure 4, for a trace σ and an event a : remove_last_event(σ.a)=σ, last_event(σ)=
ε if σ= ε and last_event(σ)= a if σ= σ1.a. The error function returns the error and exits
the algorithm.

Input : TP : test purpose, S1, S2 ; Output : {TPSi
}i=1,2 ;

Invariant : Sk = S3−i (* Sk is the other specification *) ; TP = µ1...µn

Initialization : µ0 = ε ; TPSi
= ε ;

for (j=0 ;j ≤ n ;j++) do
if (µj ∈ ΣSi ) then TPSi

= TPSi
.µj (* just add *)

if (µj ∈ ΣSk

L ) then TPSi
= TPSi

.µ̄j (* just add the mirror *)
if (µj ∈ ΣSk

U ∪ {τ})
σ1 := TPSi

; al =last_event(σ1)
while al ∈ ΣSk

U ∪ {τ} do σ1=remove_last_event(σ1)
al−1 =last_event(σ1) (* al−1 is the last event added to TPSi

and
end a mirror event āl−1 may exist in Sk *)

MSk
= {q ∈ QSk such that q

āl−1

→ and σ = āl−1.ω.µj ∈ Traces(q)}

if (∀q ∈ MSk
, q

σ

6−→) then error(TP not valid : no path to µi)
while (e=last_event(ω) /∈ ΣSk

L ∪ {ε}) do ω=remove_last_event(ω) end
if (e ∈ ΣSk

L ) then TPSi
= TPSi

.ē
else error(TP not valid : µj /∈ ΣS1 ∪ ΣS2)

Figure 4. Algorithm to derive TPSi
from TP

2- The second step of the proposed method consists in using conformance test ge-
neration tool to derive two unilateral iop test cases TC1 and TC2 (see figure 3(b)). The
obtained test cases are modified in order to take into account the observation of both
output and input events in interoperability testing. For example, l!m (resp. l?m) will be
replaced by ?(l?m) (resp. ?(l!m)). This means that the unilateral interoperability tester
observes that a message m is received from (resp. sent to) the other IUT on the lower
interface l.
Remark : the first step of the method proposed here (cf. figure 3(b)) is linear in the maxi-
mum size of specifications. Indeed, it is a simple path search algorithm. The second step is
also linear in complexity, at least when using TGV [2]. Thus, it costs less than calculating
S1‖AS2 with the classical method based on a global iop criterion.
5.3. Applying the method to an example

Let us consider the two specifications S1 and S2 of figure 2 and the interoperabi-
lity test purpose TP = l1?a.U2!N . This test purpose is interesting because it contains

CARI’2006



8 CARI’2006 – Volume 1 – 2006

events on both interfaces and both IUT. Applying the algorithm of figure 4, we obtain :
TPS1

=l1!a.l1?n and TPS2
= µ̄1.µ2 = l2!a.U2!N . The obtained test cases TC1 and

TC2 are given in upper side of figure 5. For interoperability test case generation based on
the global relation, the obtained TC (cf. third test case in figure 5) comes from the com-
position of S1‖AS2 with TP . According to the theorem 4.1, final interoperability verdicts
obtained with TC1 and TC2 should be the same as the verdict obtained with TC. Due
to page limitation, the proof cannot be given here but a look at glance to TC1 and TC2

shows the same paths and verdicts in TC.

INC INC

0 1 2 (PASS) PASS

TC1
?(l1?b)

?(l1?a) ?(l1!c) ?(l1?n) U1?N

?(l1?r)

PASS

TC2

0 1 3
U2!A ?(l1!a) ?(l1?c) ?(l1!n) U2?N

2 4

U2!A ?(l1!a) ?(l1?a) ?(l1!c) ?(l1?c) ?(l1!n) ?(l1?n) U1?N U2?N
0 1 2 3 4 7 PASS

(PASS)

U2?N
?(l1?n) U1?N

PASS

65

8
,

Figure 5. Interoperability test cases obtained for TP = l1?a.U2!N

6. Conclusion
In this paper, interoperability criteria taking quiescence into account are defined, des-

cribing the conditions under which two IUT can be considered interoperable. A theorem
proving that two of them are equivalent allows a new method for interoperability test ge-
neration that avoids the classical state-explosion problem.
The obtained test cases suggest a distributed approach for interoperability testing. Our
study restricted the proposed framework to the one-to-one interoperability testing context.
Further studies will consider distributed interoperability testing for architecture composed
of more than two implementations.

7. Bibliographie
[1] TRETMANS J., « Testing Concurrent Systems : A Formal Approach », CONCUR’99 – 10

th

Int. Conference on Concurrency Theory, volume 1664 of LNCS, pages 46-65, 1999

[2] FERNANDEZ J.-C., JARD C., JÉRON T., VIHO C., « An experiment in automatic generation
of test suites for protocols with verification technology », Science of Computer Programming -
Special Issue on Industrial Relevant applications of Formal Analysis Techniques, 1997

[3] RAFIQ O., CASTANET R., « From conformance testing to interoperability testing », Protocol
Test Systems, volume III, pages 371-385, North-Holland, 1991

[4] ARAKAWA N., PHALIPPOU., RISSER N., SONEOKA T., « Combination of conformance and
interoperability testing », Formal Description Techniques FORTE’92, september 1992

[5] CASTANET R., KONE O., « Test generation for interworking systems », Computer Communi-
cations, volume 23, pages 642-652,Elsevier Science, 2000

[6] SEOL S., KIM M., KANG S., RYU J., « Fully automated interoperability test suite derivation
for communication protocols », Comput. Networks, 43(6) :735-759, 2003

[7] BARBIN S., TANGUY L., VIHO C., « Towards a formal framework for interoperability tes-
ting », FORTE’01, august 2001

[8] VERHAARD L., TRETMANS J., KARS P., BRINKSMA E., « On asynchronous testing », Fifth
international workshop on protocol test systems, North-Holland 1993

[9] DESMOULIN A., VIHO C., « Quiescence management improves interoperability testing »,
TestCom 2005, Lecture Notes in Computer Science volume 3502, pages 364-378, mai 2005

CARI’2006


