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RÉSUMÉ. En suivant les travaux de J. Cheng et al [7], on reformule le problème de complétion de don-
nées en un problème de reconstruction d’une fonction connaissant ses moments. Cette interprétation
se fait via la simple utilisation d’une formule de Green. Des tests numériques illustrent l’efficacité de
la méthode proposée. Nous appliquons également cette méthode à la résolution de deux problèmes
inverses correspondants à la détermination d’un coefficient de Robin et à l’identification d’une fissure
d’interface.

ABSTRACT. Following J. Cheng et al [7], by using the Green’s formula we rephrase the illposed
problem of boundary data recovering as a moment problem. Robustness of the proposed missing
data reconstruction process is investigated. Numerical tests highlight the efficiency of the proposed
method. In addition we give an application to two inverse problems, Robin coefficient determination
and interfacial crack recovery.
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1. Introduction

We consider in this work the problem of recovering lacking data on some part of
the boundary of a domain from overspecified boundary data on the remaining part of
the boundary. This kind of problem may occur very often in engineering sciences as the
reconstruction of physical variables from lacking data is highly useful in many industrial
processes. The more common problem borrowed from thermostatic consists in recovering
the temperature in a given domain when the distribution of it and of the heat flux along
the accessible region of the boundary are known. Given a flux

�
and the corresponding

temperature � on ��� , one wants to recover the corresponding flux and temperature on the
remaining part of the boundary ��� , where ��� and ��� constitute a partition of the whole
boundary �	� . The problem is therefore set as follows

Find 
���
���� on ��� such that there exists a temperature field � satisfying :�� ��� ����� in ��
� ���  !� � on ���"
�#�$� on � � � [1]

This problem is known since Hadamard [2, 3, 6] to be illposed in the sense that the depen-
dence of � and consequently of 
���
���� on the data 
 � 
��%� is known to be not continuous.
We propose, in this paper, to reconstruct directly both lacking data 
&��
���� .

There are several general algorithms for solving these problems. In our approach we
will restrict ourselves to the case where � � is a flat boundary. In this particular case, the
data extension problem turns out to be quasi-explicitely solvable in so far as it is rephrased
as a moments problem.

Our work is to be linked to those [7] in which the Cauchy problem has been transfor-
med into a moment problem in the particular case where the boundary �'� , on which the
data is lacking, is flat.

2. Data boundary recovering via Legendre moment problem

The following Cauchy problem� � � � in ��
 [2]� � ( on ���"
 [3]�)��) � * on ���+� [4]

is well known to be highly ill posed since Hadamard, that is any small change in the
initial data may induce large variation of the solution, [2, 3, 6]. In [7], J. Cheng develop
a numerical method for an approximation of the solution of 
&,-��./
�01� . More precisely,



by using the Green formula, the Cauchy problem is transformed into a moment problem.
In fact they prove that the initial Cauchy problem 
&,-� - 
�01� is equivalent to the following
moment problem 2436517-8�94: �<;>=4
&()
?*@�A
 [5]

where

8
is an unknown function defined on �@�CBD� ,

7
is an harmonic function such that� 7 � � in ��
 [6]� 7�) � � on ���E� [7]

To approach the solution of 
GF6� they they found the moments of the solution on the ba-
sis H+IKJML JON IN and they use the Gram-Schmidt matrix to recover the Legendre moments,
however this matrix is ill conditioned. Our contribution in this paper, is to make appear
directly the components with respect to an orthonormal basis and apply these results to
some inverse problems. Let

7
be an harmonic function solution of the equations� 7 � � in ��
 [8]7 � � on ����� [9]

We denote by H P = H 7RQS7 satisfies (8)-(9) L and H T = H 7RQS7 satisfies (6)-(7) L . ConsiderHVU J L JON IN a set of functions such that the following conditions are fulfilled
�W%�YX Z	[]\  YHVU J LM^JE_	` ��U T 
&���G�A
HaU J L JON IN is an orthogonal basis in U T 
�� � �O�U J is a Hilbertian basis of U T .
We will consider from now on, the Legendre-Fourier polynomials. Let us point out that we
obtain here the Legendre moments of the function � and bVcbVd directly. Our approach avoid
the orthonormalization step, which is highly ill posed. For that, let e ` 
fI)�O
Ee'PD
�I)�O
"�"�+�+
 be a
shifted Legendre polynomials normalized by g P` 
&e J 
�I)�E� T 9 Ih�ji . These polynomials are
defined for all kl���m
"i-
"�"�+� by e J 
fI@�n� Jop _	`@q J p I p 
 [10]

where

q `r` �si6
 q JEt ` �u
&,+k%v�iV�1wx 
 q JEt p �y. q Jrt pVz P 
 k { v�iV�"
 k�v<i{ .|iV�
and kl���m
"i-
r,K
r}~
+�"�"� { �si6
r,~
E}m
"�"�+�A
Gk-�



For illustration, let � be a bounded, simply Lipschitz connected domain of IR T defined by�|�j�m
�I�
E�K��� IR
TR� ���|I!�/i6
��l������i1�C


with ����� � 
fI�
��~��� IR
TR� �����~
~�l�|Ih��i � 


and ��� is a Lipschitz curve in � 
�I�
E�K��� IR Ta� ���$� � which connects the two points 
��m
E�1�
and 
�i6
r�-� such that � 
fI�
��~��� IR TV� �l���~
~����I���i ��� � � ���@��� To recover the unk-
nown function, one has to construct a family of harmonic functions

7 d such that� 7 d�)� 
�I�
E�1����e d 
fI@�A
E h���~
+i6
+�"�"�@�
For that, it is sufficient to choose7 d 
�I�
��~�n� IM 
&� d 
�Ilv��G�~�E�A
~ h���m
"i-
"�"�+�
where � J is a primitive of e J and �-� is the imaginary part. For all Ih� IR, we define the
sequence Ha� J L JON IN such that � J 
fI@��� gY�P e J 
f��� 9 � , for ����
�I�
��~� in IR T , then we deduce
the sequence � J 
fI�
E�~�����-��
&� J 
fI�v �¡�~��� . We can prove easily that for all k in IN, � J is
in ¢ P . By using Green’s formula, we set2 3-£�¤ �	� J�) ��. �)��] � J"¥ 91: � 2 3 5 ¤ �	� J�) ��. �]��) � JO¥ 91: � [11]

On ��� , we have bV¦>§bVd 
�I�
r�-����e J 
�I�
E�1� and � J 
fI�
r�-�n���~
�¨Kkl� IN, therefore213 £R¤ �	� J�) ��. *@� J"¥ 94: � 21365 e J � 94: � [12]

Which gives the Legendre moments of the solution of problem 
G,6��.$
f04� on �Y� . To apply
this method for the identification of Robin coefficient and interfacial crack recovery, we
have also to reconstruct the normal derivative b+cbVd on ��� . For that reason we define the

sequence H 9 J L JON IN such that

9 J 
�I)�#�ª©?« §© � 
fI@� . For �¬�­
fI�
��~� in IR T , we deduce the
sequence ® J 
�I�
E�K�¯�<°R±4
 9 J 
fI²v��¡�~��� , k�� IN. Take

7 J ��® J in 
�i6ia� , then on ��� we have�)® J�]� 
fI�
E�1����� and ® J 
fI�
r�-����°R±-
&e J 
�I�
r�-���O
S¨~k�� IN

The identity 
�i-iV� becomes243-£R¤ �@® J�) �³.´*)® J ¥ 94: � 213 5 e J �)��] 94: [13]



which allow the recovering of Legendre moments of bVcbVd .
By using the results found in this section, the Legendre moment ; J 
6k´� IN, for the

solution � of the problem 
&,-�Y.|
�01� , on ��� , are given through the following formula; J � 213 £ ¤ �	� J�) ��. *@� J ¥ 94: � 21365 U J � 94: 
1¨~k�� IN �
Hence the approximate value of � , on � � , is a polynomial [ d of degree  such that [ d 
f�����dµJE_	` ; J U J 
f���O� The Legendre moment for the bVcb+d are given by¶ J � 2 3 £�¤ �@® J�) �³.´*)® J ¥ 94: � 2 365 U J �]��) 94: 
�¨~k�� IN �
Hence the approximate value of b+cb+d is a polynomial � d of degree  such that � d 
f�����dµJE_	` ¶ J U J 
����A�
3. Numerical experiments

In this section, several numerical experiments are presented to verify the accuracy of
the proposed method. First, we consider the problem of recovering of the solution � andbVcbVd on ��� . Second, we test our identification process to real experimental data, and to go
towards a reconstruction based on true data, we are interested in the robustness of the
algorithm with regard on simulate noisy data.

As an exact solution of 
G,6�Y.<
�01� , take �Y
fI�
��~�¯�·( P 
�I�
E�K���/±VI [ 
 \ �K��¸O¹ : 
&º?I@� , where\ and º are two real constants. Let � and �Y� the set and a part of his boundary respectively
as defined in section 2.

Exploiting the previous data matching procedure, we can compute ; J ��g 3 £ 
&( b = §bVd .* 7 J � 94: and ¶ J � g 3-£ ¤ bV» §b+d �#.�*)® J"¥ 91: respectively, k#�j�~
"i-
r,~
"�"�+�]� The exact value� on ��� is described by the solid lines.
In Figure 1, we take \ �sºR�sF and  ´�sF~
"iV¼~
"�+�"�A
+ia½ . Note that for  ��uiM½ , a large

error will occurs between the exact and the approximate solution. In Figure 2, we study
the convergence of the algorithm for oscillating functions, we take \ �¾º��¬iVFK
+ia½K
r,D�
and  $�¿iV� . For the same example, we present in Figure 3 the approximation of bVcbVd on� � with \ ��º���F~
"iaFK
"iaF and  equal FK
rF and i+� .

In [7], Cheng et al., took the example �Y
fI�
��~�C�s(-T6
fI�
��~�À�s±+I [ 
�i+�D�~��Á : �G �
�i+�6I)��v±VI [ 
&}D�~��¸"¹ : 
&}DI@�¯vsi+�m
��KÂ�.<}D�4I T � and they found a large error between exact and ap-
proximate solution when  ��yiV, . As illustrated in figure 0 , our data matching procedure
compares very well with the one described in [7].
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Figure 1. Curves of ÃlÄ�ÅMÆ and its approximation for ÇRÄ�ÈnÄ�É and for Ê�Ä�É , Ê�Ä$ËAÌ andÊ�Ä$ËAÍ respectively

4. Applications

We present here an application to two inverse problems, Robin coefficient determina-
tion and interfacial crack recovery.

4.1. The Robin inverse problem

Let � be the solution of the problem�� � � �#��� in ��
bVcbVd ��* on ���O
bVcbVd v����#��� on � � � [14]

The inverse Robin problem is to find a function � such that the solution of the previous
problem satisfies �#��( on Î , where Î is a part of accessible boundary � � . In this work
we suppose that ÎÏ��� � , our objective is to approach the function � on � � . The field,
which we simulate is given by (DT6
fI�
E�~� , see subsection 3.1. Then using the previous data
matching procedure, we approach both � and bVcbVd respectively on � � . We give in figure
5 the approximation of � for \ �Ðº��ÑFK
+i+� and iVF and we take for the degree of the
polynomial of approximation,  h��F~
EÒ and iV� respectively.

4.2. Interfacial crack recovery

In this section, we examie a numerical situation to capture a linear emerging interfacial
crack with a satisfactory accuracy.

In this experience, the crack Ó is known to lay in an apriori known line Ô that splits
the domain � , for which �Y� stands for the whole external boundary, into two subdomains� P and � T , each of them having a common part with �'� . The temperature and the heat
flux on the outer boundary �Y� are provided by 
&()
 � � .

The methodology for the crack detection is as follows. We consider two completion
data problems set on each subdomain � � ,�� � � �)����� in ����
bVc 5bVd ��* on ����Õ#�	����
�)����( on ����Õ��	����� [15]

Then we use the previous procedure to recover Ö �]×@��� P .�� T on the line Ô . The crack is
localized as the support of Ö �m× .
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Figure 2. Curves of ÃØÄ�ÅMÆ and its approximation for Ç�Ä´È�Ä|ËOÉMÙAËOÍDÙEÚ"Û and Ê�Ä|ËAÛ
For numerical tests we consider the function ( Â �¾
fÜD� PEÝrT ¸O¹ : 
+ÞT � , the crack is on the

x-axis and is specified by the part where ( has a jump, it coincides with Ó!�sÖ �~
r�~�ßFa× . Then
we can recover the solution of 
&,-�>.�
f01� with (���( Â and *#� bVà�ábVd on � � . We take for the
degree of the polynomial of approximation  h�·i+�m
"ia, and  !�yi"0 , see figure ¼ .
5. Comments

We proposed in this work a method for data matching via a Legendre moment probem.
Our data recovering process has two main features that make it an efficient method. The
first feature is undoubtly its robustness : It compares very well with existing data recove-
ring processes because it allows the reconstruction of highly oscillating data. The second
feature we would like to point out concerns the cost of the present method : Since we have
converted the data matching probem into a moment one, the recovering process turns out
to be quasi-explicit (i.e it does not require any resolution of the forward problem). We tes-
ted successfully the matching method in the case of temperature and heat flux recovering.
Practical applications have been also presented.
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Figure 4. Curves of ã"äã"å , for ÃlÄ�Å"ç , and its approximation for Ê�Ä$Ë?è6ÙAËré and ËAÉ respectively
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