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ABSTRACT. We consider the model-checking problem for a weak real-time logic called event-
recording logic. We propose a two players parity game which decides if a real-time system modelled
with an event-recording automaton is a model of a given formula ϕ. Region abstraction is done on the
positions of the game in order to compute a winning strategy in that game. We show that a real-time
system is a model of a formula if there is a winning strategy for one player in the game.

RÉSUMÉ. Nous traitons le problème de model-checking pour une logique temps réelle faible appelée
event-recording logic. Les systèmes temps réels considérés sont modélisés à l’aide des systèmes de
transition temporisés sans mémoires qui dérivent des event-recording automata. Nous proposons un
jeu de parité à deux joueurs et nous montrons qu’un système est un modèle de notre formule s’il existe
une stratégie gagnante pour un joueur déterminé dans le jeu. Le calcul d’une stratégie gagnante est
rendu possible par l’abstraction de l’espace des positions du jeu à l’aide des régions.
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1. Introduction

Sorea proposed [1] a decidable logic called Event-recording logic (ERL). ERL is
timed extension of the mu-calculus [9]. In this paper, model-checking problem [8] of
this logic is solved. Event-recording timed transition systems (ERTTS) are used to model
real-time systems. ERTTS definition derives from the one of event-recording automata
[5]. ERTTS and ERL are interesting for the proposed game in the way that we do not care
about the clocks to be reseted. The local time-context model-checking problem solved in
this paper is the following: Given an ERTTS P and an ERL formula ϕ, does the initial
state p0 of P satisfy ϕ in an initial time-context r0. Game approach is used here to solve
that problem.

We propose a two players parity game G(P , ϕ, r0). To check if p0 satisfy ϕ in an
initial time-context r0 is reduced to checking the existence of a winning strategy for the
first player in that game. Since real-time systems may have a infinite state space, an
abstraction which uses regions is done on the arena the game. The regions feature ensures
a finite number of positions in the game. This permits to obtain a finite parity game [10, 2].

Our method is similar to the one in [6, 4] which also inspired some of our definitions
and results. The second part of the next section recalls some definitions. This includes
definitions for ERTTS and ERL formulas; and the relation between a formula and an
ERTTS. We define and we solve the model-checking game in section three. The last
section concludes and discusses applicability of our results.

2. Definitions

2.1. Clocks, guards, valuations, regions

Let Σ = {a, a0, a1, . . . , an} be a set of events, h(ai) the clock associated to ai, H =
{h(ai) | ai ∈ Σ}. A valuation v : H 7→ R≥0 assigns a positive real-value to each clock;
v(h) is the value the clock h. For t ∈ R≥0, the time’s elapse’s operation on v denoted
v + t is defined by (v + t)(h) = v(h) + t; reset(v , {h}) is the valuation defined by
reset(v , {h})(h(a)) = 0 if h(a) = h else, it is equal to v(h(a)).

Let c ∈ Q and ∼∈ {<,>,≤,≥,=}, a time-guard g is generated by the grammar :
g ::= tt | ff | h ∼ c | h1 − h2 ∼ c|g1 ∧ g2.

The v-semantics of a time-guard g denoted ‖g‖ is the set of valuations which satisfy
g . The satisfaction relation |= between a valuation v and a time-guard g is defined as
follows : v |= h ∼ c iff v(h) ∼ c, v |= h1 − h2 ∼ c iff v(h1) − v(h2) ∼ c, v |= g1 ∧ g2

iff v |= g1 and v |= g2. Formally, ‖g‖ = {v | v |= g}.
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The granularity of a set of time-guardsG = {g1, g2, . . . , gn} the tuple gr = 〈H,m,max〉
where, H is a finite set of clocks, m ∈ N and max : H 7→ Q≥0. G is said gr-granular
and, all the time-guards are gr-granular; that is, each time-guard g ∈ G uses the clocks
in H , each rational constant appearing in g is an integral multiple of m, and each clock
h ∈ H is never compared to a constant larger than max(h).

A region r is an equivalence class of the valuations. Let ent(v1(h)) and fract(v(h))
be the two functions which return respectively the integer and the fractional par of v(h).
The equivalence relation v1 ' v2 is defined by:

– For all h ∈ H, either ent(v1(h)) = ent(v2(h)), or both ent(v1(h)) and
ent(v2(h)) are greater than max(h).

– For all h1,h2 ∈ H with v1(h1) ≤ max(h1) and v1(h2) ≤ max(h2),
fract(v1(h1)) ≤ fract(v1(h2)) iff fract(v2(h1)) ≤ fract(v2(h2)).

– For all h ∈ H with v1(h) ≤ max(h), fract(v1(h)) = 0 iff fract(v2(h)) = 0

We use [v ] to represent the equivalence class of v . Reg represents the set of all the
regions.

Lemma 2.1 [5] There are at most |H|! × 2|H| × Πh∈H(2 × max(h) + 2) regions.

The semantics of a time-guard can be extended to regions. We say that r |= g if there
is at least one valuation in r which satisfies g . Because a region can be represented by
using the time-guards, it is also convenient to say that r |= g if r ∧ g 6= ff. The time’s
elapse’s operation on a region r denoted r + t is defined by (r + t) = {[v + t] | v ∈ r}.
The reset operation is defined by reset(r, {h(a)}) = {[reset(v , {h(a)})] | v ∈ r}. We
remark that, when time elapses in a region, we may get a finite number of regions.

2.2. Event-recording time transition system

An event-recording time transition system (ERTTS) on Σ and H is a tuple P =
〈P , p0,→P〉 where P is the set of control states of P , p0 is the initial state, and →P ⊆
P ×Φ(H)×Σ×P is the transition relation of P . (p, g , a, p ′) represents a transition from
the control state p to the the control state p ′. We additionally require that (p, g1, a, p1) ∈
→P and (p, g2, a, p2) ∈ →P implies g1 ∧ g2 = ff. Shortly (p, g , a, p ′) is called a (g , a)-
transition from p to p ′.

An ERTTS is gr-granular if the set of the guards of its transitions are gr-granular. In
what follows, the considered ERTTS are gr-granular for some granularity gr.

The semantics of P is the finite transition system S = 〈S, s0,→S〉 where S ⊆ P ×
Reg is the set of states also called configurations, s0 = (p0, r0) is the initial configuration,
r0 the initial region and →S⊆ S × Σ × S is the transition relation. There is a real-time
transition ((p, r), a, (p ′ , r′)) ∈→S if there is (p, g , a, p′) ∈ →P , t ∈ R>0 such that
r + t |= g and r′ ∈ reset((r + t) ∧ g , {h(a)}).
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2.3. Event-recording logic

Let g represent a time-guard, a an event, V ar = {X,Y, . . .} a set of variables. A
formula ϕ of ERL [1] is generated by the following grammar:

ϕ ::= tt | ff |X |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 | [g , a]ϕ | 〈g , a〉ϕ |µX.ϕ | νX.ϕ

A variable X is bounded in ϕ if there is a sub-formula σX.ψ(X) of ϕ with σ ∈ {ν, µ}.
σX.ψ(X) is the binding formula ofX . An ERL formula ϕ is well named if each variable
has a unique binding formula and, for each binding formula σX.ψ(X) in ϕ, the variable
always X occurs in ψ(X) in the scope of a modality ([] or 〈〉). If ϕ(X) is a formula,
ϕ(Y/X) is obtained from ϕ(X) by replacing X by Y . From now only well-named for-
mulas are considered.

Given a formula ϕ, Bdϕ(X) represents the binding formula of X in ϕ. X is a µ-
variable if Bdϕ(X) = µX.ψ(X) and X is a ν-variable if Bdϕ(X) = νX.ψ(X).

New constants called binding constants and ranged over U, V, . . . are introduced and
associated to each variable. The binding constantU associated to the variableX is defined
by U = Bdϕ(X). U is a µ-constant if it represents a µ-fix-point formula. U is a ν-
constant if it represents a ν-fix-point formula. Cons represents the set of constants.

The definition list D(ϕ) = (U1 = σX1.ϕ1(X1), U2 = σX2.ϕ1(X2), . . . , Un =
σXn.ϕ1(Xn)) of ϕ is a finite sequence of tuples constructed by means of DL(ϕ) as
follows:

– DL(tt) = DL(ff) = DL(X) = DL(U) = ∅

– DL(ϕ1 ∨ ϕ2) = DL(ϕ1 ∧ ϕ2) = DL(ϕ1) ◦DL(ϕ2)

– DL(〈g , a〉ψ) = DL([g , a]ψ) = DL(ψ)

– DL(µX.ϕ(X)) = (U = µX.ϕ(X), DL(ϕ(U/X))) and U is a new constant

– DL(νX.ϕ(X)) = (U = νX.ϕ(X), DL(ϕ(U/X))) and U is a new constant.

The operator ◦ concatenates two definition lists is such a way that no constant is de-
fined twice.

For a formula ϕ and a definition list D, the expansion operation expD(ϕ), which
subsequently replaces definition constants appearing in the formula by the right hand-
sides of the defining equations, is defined as follows:

expD(ϕ) = ϕ(Un/ψn) . . . (U1/ψ1)

where D = ((U1 = ψ1), . . . , (Un = ψn)) and ψi = σiXi.ϕi(Xi) and σi ∈ {µ, ν}.

Consider a formula σiX.ϕ(X) and its sub-formula σjY.ϕ(Y ). The variable Y de-
pends on the variable X (denoted X < Y ), if X occurs free in σjY.ϕ(Y ).Given ϕ and
DL(ϕ), we say that U is older than V (denoted by U � V ) if U appears before V in
DL(ϕ). � is a total order on the binding constants of ϕ.
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2.4. Relation between ERL and ERTTS

The semantics ‖ϕ‖Val

P of a formula ϕ with respect to an ERTTS P and an assignment
Val : Var 7→ 2P×Reg is the set of configurations which satisfy ϕ.Val [X/T ] is an assign-
ment defined such that Val [X/T ](Y ) = T if Y = X else Val [X/T ](Y ) = Val(Y ). The
satisfaction’s relation |=P⊆ P ×Reg ×ERL is defined as follows :

– (p, r) |=P tt , - (p, r) 6|=P ff,

– (p, r) |=P X iff (p, r) ∈ Val(X)

– (p, r) |=P ϕ1 ∨ (resp.∧)ϕ2 iff (p, r) |=P ϕ1 or (resp. and) (p, r) |=P ϕ2.

– (p, r) |=P [g , a]ψ iff for every t ∈ R≥0, (p, g1, a, p
′) ∈ →P such that r+t |= g∧g1,

(p′, r′) |= ψ for all r′ ∈ reset((r + t) ∧ (g ∧ g1), {h(a)}).

– (p, r) |=P 〈g , a〉ψ iff there exist t ∈ R≥0, (p, g1, a, p
′) ∈ →P such that r + t |=

g ∧ g1 and (p′, r′) |= ψ with r′ ∈ reset((r + t) ∧ (g ∧ g1), {h(a)}).

– (p, r) |=P µX.ϕ(X) iff (p, r) ∈ ∩{T ⊆ S | ‖ϕ(X)‖
Val[X/T ]
P ⊆ T}.

– (p, r) |=P νX.ϕ(X) iff (p, r) ∈ ∪{T ⊆ S |T ⊆ ‖ϕ(X)‖
Val[X/T ]
P }

P is a model of a formula ϕ in a time-context r0 iff (p0, r0) |=P ϕ.

The modal operators (〈〉 or []) and logic operations (∧ and ∨) are monotonic over the
finite set of configurations. The fix-point formulas can be computed using the Knaster
and Tarski[10] as follows:

– (p, r) |=P µX.ϕ(X) iff (p, r) |=
⋃

λ µ
λX.ϕ(X)

– (p, r) |=P νX.ϕ(X) iff (p, r) |=
⋂

λ ν
λX.ϕ(X)

λ ranges over the class of ordinals.

3. Local model-checking game

3.1. Definition

Given an ERTTS P , an initial time-context r0, the model-checking game of a formula
ϕ0 is the tuple G(ϕ0,P , r0) = (Pos,→,Acc) where Pos ⊆ P ×Reg × Cl(ϕ0) are the
positions of the game. Eve’s positions are those which contain a formula of the form
〈g , a〉ϕ, µX.ϕ(X), ϕ1 ∨ ϕ2. Adam’s positions contain a formula of the form [g , a]ϕ,
νX.ϕ(X), ϕ1 ∧ ϕ2. Acc is the winning condition on the plays. →⊆ Pos × Pos is the
move relation of the game defined as follows:

– There is no move from (ff, p, r) or (tt , p, r).

– There is a move from (〈g , a〉ϕ, p, r) or ([g , a]ϕ, p, r) to (resp. ϕ, p ′, r′) if there is
a t ∈ R≥0, (p, g1, a, p

′) ∈→P such that r + t |= g1 ∧ g and r′ ∈ reset((r + t) ∧ (g ∧

Arima



6 Arima – Volume 1 – 2006

g1), {h(a)}), else there is a move to (ff, p, r) (resp.(tt, p, r))

– There is a move from (ϕ1 ∧ϕ2, p, r) or (ϕ1 ∨ϕ2, p, r) to (ϕj , p, r) with j ∈ {1, 2}.

– There is a move from (σX.ϕ(X), p, r) to (U, p, r) whereU = σX.ϕ(X) ∈ D(ϕ0).

– There is a move from (U, p, r) to (ϕ(U/X), p, r) if U = σX.ϕ(X) is in D(ϕ0)

A play in the game play = pl0.pl1. . . .pln is a finite or infinite sequence of positions
such that pl0 = (ϕ0, p0, r0). A binding constant U is regenerated in a play if for some
i, the formula at the position i is ψi = U and the formula at the position i+ 1 is ψi+1 =
ϕ(U).

A play is winning for Eve (resp. Adam) if it is finite and the formula at the last position
is tt (resp ff); or, it is infinite and the oldest binding constant which is regenerated infinitely
often is a nu-constant (resp mu-constant). We recall that the order on the constants is total.

A positional strategy for the player j is a mapping stratj : Posj 7→ Pos where Posj

is the set of positions of the player j ∈ {Eve, Adam}. A play play = pl0.pl1. . . .pln

is consistent with stratj if for each pli appearing in the the play, pli ∈ Posj implies
pli+1 = stratj(pli).

A strategy stratEve is a winning strategy if all the plays consistent with it are winning
for Eve.

3.2. Game characterisation

Theorem 3.1 P is a model of ϕ0 in the context-time r0 iff there is a winning strategy for
Eve in G(ϕ0,P , r0).

We detail in the following tabular the fix-point semantics of the subsection 2.4:
The least fix-point semantics The greatest fix-point semantics
* (p, r) |=P µX.ϕ(X) iff (p, r) |=P⋃

λ µ
λX.ϕ(X)

* (p, r) |=P νX.ϕ(X) iff (p, r) |=P⋂
λ ν

λX.ϕ(X)
* (p, r) 6|=P µ0X.ϕ(X) * (p, r) |=P ν0X.ϕ(X)
* (p, r) |=P µα+1X.ϕ(X) iff (p, r) |=
ϕ(Uα) where Uα = µαX.ϕ(X)

* (p, r) |=P να+1X.ϕ(X) iff (p, r) |=P

ϕ(V α) where V α = ναX.ϕ(X)
* if λ is a limit ordinal, (p, r) |=P

µλX.ϕ(X) iff there is an ordinal α < λ
such that (p, r) |=P µαX.ϕ(X).

* if λ is a limit ordinal,(p, r) |=P

νλX.ϕ(X) iff for all the ordinal α < λ,
(p, r) |=P ναX.ϕ(X).

Following the semantics of the fix-point, we define a signature sig = (α1, α2, . . . , αn)
as a sequence of ordinals which values depends on a configuration. Let a formula ψ with-
out free variables, a definition list D containing all the definition constants occurring in ψ,
and a configuration (p, r) of P such that (p, r) |=P exp(ψ)D. Let Dµ = (Uk1

, . . . , Ukdµ)
be the projection of D on µ-constants. ψ has the signature sig = (α1, . . . αdµ) at
the configuration (p, r) if (α1, . . . αdµ) is the least (in lexicographical order) sequence
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of ordinals such that (p, r) |=P expD′(ψ) where D′ is a definition list obtained from
D by replacing the i − th definition of the µ-constant (Uki

= µX.ϕki
(X)) ∈ D by

(Uαi

ki
= µαiX.ϕki

(X)) ∈ D′ for each i ∈ {1, . . . , dµ}.

Lemma 3.1 The signature sig(ϕ, p, r) of ϕ at (p, r) is such that:

– sig(ϕ1 ∧ ϕ2, p, r) = max(sig(ϕ1, p, r), sig(ϕ2, p, r))

– sig(ϕ1 ∨ ϕ2, p, r) = sig(ϕ1, p, r) or sig(ϕ1 ∨ ϕ2, p, r) = sig(ϕ2, p, r)

– sig(〈g , a〉ϕ, p, r) = sig(ϕ, p ′, r′) for some (ϕ, p′, r′) such that there is a move
from (〈g , a〉ϕ, p, r) to (ϕ, p ′, r′).

– sig([g , a]ϕ, p, r) = sup{sig(ϕ, p ′, r′) such that there is a move from
(〈g , a〉ϕ, p, r) to (ϕ, p′, r′)}.

– sig(σX.ϕ(X), p, r) = sig(U, p, r) where U = σX.ϕ(X) with σ ∈ {µ, ν}

– sig(U, p, r) with U = µX.ϕ(X) is greater or equal to sig(ϕ(U/X), p, r)

– sig(V, p, r) with V = νX.ϕ(X) equal to sig(ϕ(V/X), p, r)

Proof: Let D = (W1 = σX.ϕ1(X), . . . ,Wn = σX.ϕn(X)) be the definition list of
ϕ0. Suppose that Wi = µX.ϕi(X), (p, r) |=P expD(Wi) and
sig(Wi, p, r) = (α1, . . . , αi−1, αi, αi+1, . . . , αdµ). Let D′ be a definition list obtained
by replacing (Wi = µX.ϕk(X)) by (Wαi

i = µαkX.ϕk(X)). Let
ψ(X) = expD′(ϕi(X)). It follows from the definition of the signature that
(p, r) |=P µαkX.ψ(X). Since αi should be a successor ordinal, it follows that
(p, r) |=P ψ(µαi−1X.ψ(X)), which means that the signature of ψ(µαi−1X.ψ(X)) at
(p, r) is (α1, . . . αi−1, αi − 1, α′

i+1, . . . , α
′
dµ) and is lower that sig(Wi, p, r).

Proposition 3.1 If P is a model of ϕ0 in the time-context r0 then, there is a winning
strategy for Eve in G(ϕ0,P , r0).

Proof: If P is a model of ϕ0 in the time-context r0, then (ϕ0, p0, r0) |=P expD(ϕ0).
Semantically, there is a smallest sequence of ordinals (α1, . . . , αdµ) such that
(ϕ0, p0, r0) |=P expD′(ϕ0) where D′ is a definition list obtained from D by replacing
the ith definition of the µ-constant (Uki

= µX.ϕki
(X)) ∈ D by

(Uαi

ki
= µαiX.ϕki

(X)) ∈ Dα for each i ∈ {1, . . . , dµ}.
A strategy which consists to choose at each existential or disjunctive node a successor
with the smallest signature is winning because of the considered order on signature.

Proposition 3.2 If there is a winning strategy for Eve in G(ϕ0,P , r0) then P is a model
of ϕ0 in the time-context r0.

Proof: The proof is dual the the above one. One can easily define the signature for ν
constants when a configuration (p, r) do not satisfy a formula ϕ and use that
construction to get a contradiction with the existence of a winning strategy for Eve.
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4. Discussion and Conclusion

We have proposed a game theoretic approach to solve the model-checking problem for
ERL formulas and we have shown that the model-checking problem for ERL is decidable.
That game can be translated into a parity game by using the alternation depth of fix-point
operators as described in [10]. The winning strategy is computable using techniques in
[2] since the abstraction provides a two players parity game on a finite arena.
This work provides a theoretical tool which will help us to solve the controller synthesis
problem [7] with respect to ERL logic. It also reviews fundamental techniques of fix-
point computation and gives an idea of how a model-checking game and a satisfiability
game for ERL under real-time systems modelled by timed automata [3] can be defined.
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