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RESUME. Dans ce travail, nous présentons des méthodes pour résoudre un modéle non-linéaire
dans le traitement d’image. LEDP est discrétisée par un schéma implicite de différences finies. Nous
utilisons des solveurs de type Newton augmentés avec stratégies de globalisation telles que des
recherches linéaires avec rebroussement. La convergence de ces méthodes peut échouer, pour éviter
cet inconvénient et accélérer la convergence, des préconditionnements non-linéaires sont présentés.
Un example de débruitage d'image est présenté.

ABSTRACT. In this work, we present methods to solve a nonlinear model in image denoising dis-
cretized by an implicit finite differences scheme. We use Newton like solvers augmented by globaliza-
tion strategies as line search with backtracking. But convergence of these methods can fail. To avoid
this and accelerate the convergence, nonlinear preconditioner are introduced. An image denoising
example is presented.

MOTS-CLES : Méthodes de type Newton, globalisation, traitement d'images, préconditionnements
non-linéaires
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1. Introduction

Simple models used in image denoisig are based on linear diffusion process described

by the heat equation :

ou
— —Au=0.
N u=0

However, results of this process are not satisfactory, it not only smoothes noise but also
simultaneously blurs edges. Consequently , nonlinear partial differential equations are
introduced and proved to be efficient filters in image processing [3, 6, 17]. These models
are generally written as follows :

% —div(g(|Vu[)Vu) = 0 in Q
u(.,0) = wo in Q )
%'39 = Oa

where g(.) is the diffusivity function and controls the amount of diffusion present in
the data. It is a non negative function, decreasing monotone, such that g(0) = 1 and
limt_)oo =0.

Perona and Malik [17] proposed the following diffusivity functions :

g(s) = = A>0

52
g(s) = exp(—ﬁ), A>0

Another example is the diffusivity function proposed by Charbonnier [7] and defined by :

g(s) = —, A >0.

In [2] and [3], the authors show the existence and uniqueness of a solution for evolutive
non-linear models. In [3] the following diffusivity function is used :

1
9(s) = ———
1+ 5

They prove the existence and uniqueness of a solution under some conditions on the pa-
rameter . For numerical solutions, they use an explicit finite differences scheme in time.
But it is difficult to verify the CFL condition in this case. The study of the model stability
of the model depends on the parameter a. The suitable choice of o, and the step of dis-
cretization that verify the CFL condition makes the numerical solution difficult.

An adequate solution would be to use an implicit scheme, but the solution of the problem
considered by an implicit scheme after linearization by the Newton method is often ex-
pensive. In addition, convergence is local and depends on the initial guess. Thus, we solve
the nonlinear system by like-Newton methods for which we use globalization strategies
such as line search and trust region methods. To accelerate the convergence we nonli-
nearly precondition the problem.

In the section below the solution of the diffusion equation (1) is introduced. We focus on

+a, A>0. 2)
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how to accelerate the convergence of Newton like methods by nonlinearly preconditioning
the partial differential equation.

2. Solution of the diffusion equation

We are interested in the following to a given noised image wuo. The denoisy image is
solution of the problem (1). To approximate the problem (1), an implicit finite differences
scheme is used. We denote respectively by h and dt the spatial and time steps sizes. In
the sequel, we take h = 1 and we define for every field p = (p1,p2) € R2, the discrete
divergence approximation :

pl(i,j)—pl(i—l,j) if 1<i<MN

div(p)(i,j) =< p1(i,5) if i=1
—p1(i —1,7) if i=DN;
p2(i,7) —p2(i,j — 1) if 1<j <Ny
+1{ p2(i,9) if j=1
—pg(’hj — 1) lf ] = N2

The discrete problem is written as :
ut (i, 5) = ut (i §) = dt (div(g(|Vul)*") (1.5) =0, 1<k <M,

Tmax

where u* (i, j) = u(z;, y;, ty), z; = ih, y; = jh, tp, = k dt and dt = L2

In this case, we solve for each time step a nonlinear system
Fu)=0, F:RY - RY, (N =N; x Ny). 3)

using Newton like solvers that we introduce briefly in the following section.

2.1. Newton solvers

The system (3) is classically solved by Newton like methods, namely inexact Newton
methods and Quasi-Newton methods. Inexact Newton methods solve approximately the
Newton linear system with a suitable precision that corrects the nonlinear iteration, see
[8, 11]. The convergence is then controlled of the so called forcing terms [12]. Quasi-
Newton methods [9, 14, 15], on the other hand, approximate and update the Jacobian
in order to avoid the costly calculation of derivatives. The most popular quasi-Newton
method is Broyden method [5]. Inexact Newton and quasi-Newton methods both require
more storage as iterations progress. The cost in function evaluation for quasi-Newton me-
thods is less expensive than for inexact Newton methods. For example, Broyden method
requires one function evaluation per nonlinear iteration. An auto-adaptative limited me-
mory Broyden method is also introduced [1]. But these methods converge only locally
and should be augmented by globalization strategies as line search [11] and trust regions
methods [16]. To accelerate the convergence and avoid failure of Newton like methods ,
the iteration should be nonlinearly preconditioned where nonlinearities in partial differen-
tial equations become more balanced. The following section is devoted to the introduction
of this aspect.
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2.2. Nonlinear preconditioners

Even with globalization techniques, nonlinear solvers to solve (3) may stagnate to a
local minima of f = ||F||, in particular for problems having unbalanced nonlinearities.
An iteration of a Newton like method with Backtracking is written as :

Tht1 = Th — AkSk,

where A is a step length computed by a line search. Let J the Jacobian of the function
F, the search direction is often computed by solving the preconditioned linear system :

Mk_leSk = _Mk_le'

According to [19], when the inexact Newton method fails to converge, then :

1 2
L <cos(By) < — = 4
cond(Jx) — cos(0h) < cond(Jy)’ @
where .
=85, V&
COS 0 = k—
O = T TV AT

0y is the angle between the search direction s and the negative gradient direction of || 7.
Hence, when the Jacobian is ill-conditioned, the Newton direction is almost orthogonal
with the gradient of || F||. In this case, the function F should be nonlinearly preconditio-
ned.
The idea of nonlinear preconditioning is to transform the system (3) into a new nonlinear
system

F(u) = G(F(u)) =0, Q)

which has the same solution as the original system and where the nonlinearities are more
balanced. The preconditioner G : RY — R is easy to compute and verify the following
properties :

~IfG(z) =0, thenx = 0.

— G ~ F~! in some sense.

The definition of a nonlinear preconditioner can not be given precisely, nor it is necessary.
There are many ways to develop the nonlinear preconditioner G, for example, the Jacobian
of lower-order discretization, the domain decomposition preconditioners composed of
Jacobian blocks on sub-domains of the of the full problem domain, and the inverse of
the high-order term in the non-linear operator. In our application, we will use Nonlinear
additive schwarz algorithm as preconditioner.

Nonlinear Additive Schwarz preconditioner

Naturally, the preconditioner should be close to the Jacobian inverse. Domain de-
composition preconditioners [18] are based on approximating the high-order term (or the
whole operator), subdividing the geometrical domain of the differential operator, compu-
ting the inverses on subdomains, and combining these inverses.

Let R;, the restriction operator to the subdomain €;, ¢ = 1,..., Ns, where Ns is the
subdomains number. The subdomain nonlinear function Fj is then defined as :

F; = R, F.
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For any z € RV, let T;(z) : RN — R¥ defined as the solution of the following subspace
nonlinear systems :

Fi(x — RI'Ty(x)) =0, for i=1,...,Ns. (6)

The new global nonlinear function is hence defined as :

Ns

F(w) = RITy(x), )

i=1

which we refer to as the nonlinearly preconditioned F'(x) (for more details, see ). In our
numerical tests we will use the block Jacobi preconditioner which can be regarded as a
zero-overlap form of additive schwarz [10].

3. Numerical results

An original image ug is noised with gaussian noise with variance of 7%. In figure
(1(a)) the original image is shown, while the noisy image is shown in figure (1(b)).
The noisy image is processed by applying the evolution model as in [3] where the diffu-

100 200 300 100 200 300
(a) Original image (b) Noisy image

Figure 1. Original and noisy images.

sivity function is given by (2). We take & = 1E — 7 and A = 1. The partial differential
equation is discretized an implicit finite differences scheme. The discrete nonlinear sys-
tem is solved by a Newton-like methods.

Figure 2 shows the processed image in different time, where the step time is dt = 1. The
nonlinear solver used is Newton-GMRES globalized by a Backtracking strategy.

Among the quantitative criteria most current to evaluate the performances of a denoi-
sing algorithm, we retained the Signal to Noise Ration (SNR), it is expressed in deci-
bels by the relation between the image of reference /1 and the image I» after analysis :

SNR(I,/1I5) = 10log;, {%} , where o is the variance [4]. Table 1 shows the SNR

for different times.

In this example, the Newton-GMRES method converges more fast than the Broyden
method. This last requires more function evaluations, for each time step, due to the Back-
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Figure 2. Denoisy image .

tracking reductions (table 2).

4. Conclusion

We presented methods to solve a nonlinear model in image processing discretized by
an implicit finite differences scheme. Newton like methods with globalization are used.
To accelerate the convergence and avoid failure in these methods, nonlinearly precondi-
tioner are introduced. We applied this approaches to simple examples, and application to
our model in image processing is in progress. Another future work is to use trust region
methods to solve this nonlinear system.
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