Cari 2008+ 22/08/08 17:21 Page 711 $

Interactive editing of tree-structured data

Bernard Fotsing Talla *

* Département d’Informatique
Université de Yaoundé I

B.P 812 Yaoundé

Cameroun

bfotsing@yahoo.fr

This work was supported by a grant delivered by the Agence Universitaire de la Francophonie

RESUME. Un éditeur est un programme interactif qui conserve les modifications subies par les objets
édités au cours de son exécution. Dans cette contribution, nous utilisons la monade d’états combinée
avec celle des entrées/sorties pour définir un tel éditeur de maniéere fonctionnelle . Nous introduisons
un ensemble d’opérateurs fonctionnels en vue d’aboutir a un langage dédié, plongé dans le langage
fonctionnel Haskell. Ces combinateurs permettent de combiner des éditeurs pour les données structu-
rées. L'édition est réalisée a travers une vue abstraite obtenue par projection de la structure concrete.
La modification de la vue abstraite implique la propagation des changements sur la structure concrete.
Nous utilisons le langage ainsi obtenu pour offrir une implémentation de la mise a jour de vues, un
probléme familier de la communauté des bases de données.

ABSTRACT. An editor is an interactive program which records the various modifications on the edited
documents during its execution. In this paper, we use the state monad in combination with the monad
of input/output to define an editor in a functional manner. We also define a domain-specific language
(DSL) embedded in Haskell (in the form of a set of functional operators) which allows to combine
tree-structured data editors. The data can be edited through an abstract view obtained by projection
of the concrete structure. The modification of the abstract view implies the propagation of the updates
on the concrete representation of the document. We use our DSL to implement the problem of view
update, a well-known problem of the database community.

MOTS-CLES : Grammaires algébriques, Programmation fonctionnelle, DSL, données structurées,
mise & jour de vues

KEYWORDS : Context-free Grammars, Functional Programming, DSL, Structured Data, View Update

CARI 2008 - MAROC
- 711 -

Cari 2008+ 22/08/08 17:21 ©Page 712 $

1. Introduction

The problem of designing and implementing syntax-directed editors is well documen-
ted, see for example [13] for a survey. Our own understanding of the subject matter is
based on the Modeless structure editor of Sufrin and Oege de Moor [12].

The tree representation of a document in an interactive editor should be at the same
time localized (giving a focus on the part of the document on which the current editing
action takes place) and partially defined (because the document being edited is still incom-
plete). A data structure is intentionally represented in the form of a syntax tree associated
with an abstract context-free grammar (we do not consider terminal symbols since we are
not interested in any concrete syntax). In order to take into account the current editing
focus, we represent the structured document by a zipper, a data structure introduced by
Gérard Huet [8] for representing a subtree together with its context, i.e. a tree with a fo-
cus that points to some node inside it. The main purpose of the zipper is to facilitate the
navigation through the document ; but it also enables one to directly localize the editing
actions at the proper place in the document (the current position of the cursor). We intend
to handle generic editing operations, namely the classical insert, cut, copy, and paste ope-
rations ; genericity means that the basic insertion operations are canonically associated
with the productions of the abstract context-free grammar. We should also be able to undo
and redo each of the preceding operations at any moment via a clipboad. The concrete
intentional representation can be manipulated in a synchronous manner by a user through
an abstract view. This abstract view may be given as in [1] by a projection on a subset
of syntactic categories of the grammar, called visible symbols. Any modification of the
abstract view should be propagated to the concrete representation.

Greenwald and al. [5] has proposed a linguistic approach of this view update problem,
a familiar problem of the database community. They consider a set of combinators, the
so-called lenses, to obtain a domain-specific language (DSL) for bi-directional tree trans-
formations. A lens is a bi-directional map relating a concrete structure to its abstract view.
Our purpose is to put forward a domain-specific language, embedded in Haskell, for ge-
nerically specifying editors for structured documents. Incidently we address the update
view problem by describing the concept of lifting transformations, which associates with
each legal transformation of an abstract view, an equivalent transformation of the concrete
structure. A bijective correspondance can be established between the “uniform” liftings
of transformations and the so-called well-behaved lenses of Greenwald and al. [S]; and
we show that the view update problem can easily be implemented using our DSL.

The rest of the paper is organized as follows. In the next section, we present a brief
introduction to monads, an algebraic structure used to implement side effects in a functio-
nal context. Section 3 presents the main contribution of this paper, namely the definition
of a domain specific embedded language for generic structured editors. We end in section
4 by illustrating our approach for editing a context-free grammar and by providing an
alternative implementation of the well-known view update problem.

2. State monad associated with 1/0

In the paradigm of functional programming, the evaluation of an expression is “pure”,
i.e. there are no side effects. Haskell is a purely functional language which uses monads
to handle computations with side effects.

CARI 2008 - MAROC
- 712 -

o

Cari 2008+ 22/08/08 17:21 Page 713 $

The concept of state in programming languages is identified with any abstraction of
the history of the execution of a program. It may for instance be a counter incremented
with each evaluation of a variable, a chain of characters which contains the trace of the
execution of a program, buffers of input/output, etc. For that purpose the state transformer
type has been introduced in Haskell :

ST s a = ST (s -> (s,a))

where s indicates the type of the objects representing the state and a the type of the
expression to be evaluated. This evaluation depends on the context, held by state s. The
result of the execution of the function (s — (s, a)) is a pair made of the subsequent state
and the value of the associated expression. The corresponding monadic state transformer
is very useful to pass the state information along computations using the method bind of
the class Monad.

In addition to this transformation of states, interactive programs require interactions
with the external world (the end-user). For that purpose we combine the state transformer
with the monad of input/output (I0) resulting in the following definition :

newtype I0State s a = I0State (s -> I0 (s,a))

The result is thus likely to react to the interactions of the user. The code implementing
this type as a monadic type system is given by the following instantiation of the monad
class

instance Monad (IOState s) where

-- return :: a -> I0State s a

return a = I0State (\s -> return (s,a))

-- >>= :: I0State s a -> (a -> I0State s b) -> I0State s b

c >>= k = I0State (\s -> (applyI0 c s) >>= (\(s,a) -> applyI0 (k a) s))

where the function applyl O, used to extract the state and the value of an input/output
state monad from an initial state, is defined by

applyI0 :: IOState s a -> s -> I0 (s,a)
applyI0 (IOState f) s =f s

3. A DSEL for interactive structured editing

3.1. Definition of an editor

Intuitively, an editor is an interactive program which reacts to the actions of a user to
modify its internal representation, and which produces a result corresponding to a view
of this internal representation. Thus, an editor is a state monad associated with the monad
of I/0 which takes as input, edit actions, and returns as output a (possibly empty) list of
commands. The Figure 1.a gives a graphical representation of an editor.

The user actions are transformed into edit actions (defined in an owner format) and
placed in the input buffer snp. The state s of the monad models the internal representa-
tion of the editor (represented in general in the form of the zipper [8]). The value of the
expression associated with the monad is carried by the output buffer out. These output
values are commands (edit actions) which must be transmitted to the same editor or to
another one to carry out specific tasks.

Finally, an editor is a function which associates to an edit action an interactive program
(IO State monad) :

CARI 2008 - MAROC
- 713 -

o

Cari 2008+ 22/08/08 17:21 Page 714 $

type Editor inp out s = inp -> IOState s [out]

)

inp E out

10

Figure 1. a) The architecture of an editor b) Combining two editors F and G

3.2. Combining two editors

We thus view editors as open reactive processes : they react to input edit commands
by possibly emitting other edit commands to similar editors. When combining two editors
F and G (as it is represented in the Figure 1.b) we want to internalize the edit commands
emitted by one of them and received by the other one. We therefore split the input and
output set of ports of each editor accordingly : we let I be an editor with internal state of
type s; whose input edit actions are either of type a, or b (Either a b) and whose output
commands are either of type e, or ¢ (Either e ¢). Similarly the state of the editor G is of
type so, its input edit actions are of type c, or d (Either c d), and its output commands are
of type b or f (Either b f). Now the corresponding state of the combined editors is a pair
(s1,s2) made of the corresponding states for each constituent subeditor. This is due to
the fact that it is a synchronous composition and we do not have to represent any internal
buffers of communication between them. Its input are of type a, or d and its output of type
e, or f. Thus the internal edit commands from F' to GG (of type c¢) or from G to F' (of type
b) are externally not accessible.

One can for instance use this combinator to connect a structured editor (reacting to the
edit action of an external user) to its clipboad (also seen as an editor). The clipboard reacts
to the external undo and redo commands and it interacts with the editor. The clipboard
may then be designed independently of the editor. We illustrate another application of that
combinator to the view update problem by allowing the edition of the concrete view of a
document through commands arising from the edition of the corresponding abstract view.
This combinator (see Fig. 1.b) is based on two more basic combinators corresponding
respectively to the disjoint union of two editors and a loop construct.

F<+>G (s1,82) loop F s
a f ; €
o
a
b @ -
d s2 f — ™
G
Figure 2. a) Combinator <+> b) Combinator loop

The combinator <+> for the disjoint union of two editors is represented in Fig. 2.a. The
types of the corresponding editors should be as follows :

F :: Editor a e s1 = a -> I0State s1 [e]

CARI 2008 - MAROC
-714 -

o

Cari 2008+ 22/08/08 17:21 ©Page 715 $

G :: Editor d £ s2 = d -> I0State s2 [f]
F<+>G :: Editor (Either a d) (Either e f) (s1,s2)} =
(Either a d) -> I0State (s1,s2) [Either e f]

If we plug the editors F' and G side by side, we obtain an object of the following type
(Either a d) -> I0OState (s1,s2) (Either [e] [f])
We therefore need a conversion function fusion

fusion :: IOState s (Either [e] [f]) -> IOState s [Either e f]
fusion p = mapIlOState fct p where fct (Left xs) = map Left xs
fct (Right xs) = map Right xs

to transform the type Either [e] [f] to the required type [Either e f] :

(<+>)::Editor a e s1 -> Editor d f s2 -> (Either a d) (Either e f)(s1,s2)
f <+> g = h where h (Left a) fusion (lift_left (f a))
h (Right d) = fusion (lift_right (g d))

The functions lift_left and lift_right allow for the transformation of an editor with one
state into an editor with two states whose only left (respectively right) state and value are
concerned by the editing process.

lift_left :: I0State s a -> I0OState (s,s’) (Either a a?’)
lift_left (IOState f) = IOState g

where g (s,s’) = mapI0 (\(sl,x) -> ((sl,s’),Left x)) (f s)
lift_right :: I0State s a -> IOState (s’,s) (Either a’ a)
lift_right (I0OState g) = IOState h

where h (s’,s) = mapI0 (\(s1,x) -> ((s’,sl1),Right x)) (g s)

The functions maplO and maplOState are used to manipulate the I/O state monad.

mapI0 :: (a->b)-> I0 a -> I0 b

mapI0 f p = do{x<-p; return (f x)}

mapIOState :: (a -> b) -> IOState s a -> IOState s b
mapI0State f p = do { x <- p; return (f x)}

The loop combinator (see Fig. 2.b) is then given as follows :

loop :: Editor (Either a b) (Either a c) s -> Editor b ¢ s
loop £ = g where g b = h (Right b)
h x = £ x >>= (mapIOState concat) . (mapM h)

The composition of two editors is then obtained, using the preceding two combinators, by
adding the necessary wiring to redirect the various output ports to the appropriate input
ports (see Fig. 3) :

(<X>) :: Editor (Either a b) (Either e c) sl ->
Editor (Either c d) (Either b f) s2 ->
Editor (Either a d) (Either e f) (s1,s2)
f <X> g = loop (bimap phi (f <+> g) psi)

phi :: Either(Either b c) (Either a d) -> Either(Either a b) (Either c d)
phi (Right (Left a)) = Left (Left a)

phi (Left (Left b)) Left (Right b)

phi (Left (Right ¢)) = Right (Left ¢)

phi (Right (Right d)) = Right (Right d)

CARI 2008 - MAROC
- 715 -

o

Cari 2008+ 22/08/08 17:21 ©Page 716 $

- A
¢ b b c
bimap = psi ° (F <+> G) ° phi (s1,s2)
F<+>G ((s1,s2)
b phi a |a e | e psi b
- - F - -
c Lb b c c c
a| a e b [b e e
Lt —— G - Lt
d d dld J¢ s f f
F <X> G = loop bimap /z;;;

Figure 3. Graphical representation of the solution (<X>)

psi :: Either(Either e c) (Either b f) -> Either(Either b c) (Either e f)
psi (Left (Left e)) = Right (Left e)

psi (Left (Right c)) Left (Right c)

psi (Right (Left b)) = Left (Left b)

psi (Right (Right f)) = Right (Right f)

bimap::(in’->inp)-> Editor inp out s ->(out -> out’)->(Editor in’ out’ s)
bimap phi e psi = (mapIOState (map psi)) . e. phi

4. lllustration : editing a context-free grammar

An editor associated with a context-free grammar reacts to the usual edit actions (in-
sertion and deletion of a production, navigation) by updating its internal state (a zipper)
and it forwards that information to the clipboard editor (via its input buffer) so that it can
update its own internal state. On the other hand, the clipboard editor receives from the
end-user the edit actions Undo and Redo to cancel or redo the preceding actions. Its state
is a set of two lists (stacks) of actions done (which can possibly be cancelled by the action
Undo) and actions cancelled (which can possibly be re-done by the action Redo). This
situation is represented in Fig. 5.a. The editor itself may be further decomposed due to
the distinction usually made between a concrete and an abstract view of the manipulated
document. As an illustration, let us consider the mathematical expression % =(z+2)
formed according to the following context-free grammar.

Exp -->Id | Nb | Fr | (Exp) | Exp Op Exp | Fr Op Exp
Fr --> Exp Exp

Nb -->0 | | 9
Id -->a | lz | A1 ..1Z
Oop ->+ 1| -1l=1x1/

The derivation tree of this expression, represented in Fig. 4.a, is the concrete structure
manipulated during the edition. If we suppose that the visible symbols are those marked by
small black points, the algorithm of projection described in [1] will give the abstract view
represented in Fig. 4.b. All user modifications on the abstract view must be propagated
on the concrete view ; and this again may be obtained by composing a pair of editors
associated respectively with the concrete and the abstract representations (see Fig. 5. b).

CARI 2008 - MAROC
- 716 -

o

Cari 2008+ 22/08/08 17:21 ©Page 717 $

Exp
Fr

/(;\E
AN\ ’ P %N
Exp Exp 17 ('/]‘5}') . .

4 AR A SCx 2)
| ! Exp Op Exp
|

1 X ‘

d . Nb
l l
X 2

Figure 4. a) Concrete view b) Abstract view

Let C be the set of concrete views, A the set of abstract views, a transformation func-
tion of abstract views is associated with an edit action such as insert, delete, copy, paste,
navigation operations, etc. We define by T C A — A the set of acceptable transforma-
tions, and 7 : C' — A the projection function on the visible symbols. As noticed in [1],
the same abstraction may have map to an infinite number of concrete views.

Do i{%‘ﬁt’ Cmd Q 0 0
]) - - E— L
Insert, Delete Todo j& Done Cvoilel‘fvrgte

Done |_| U Todo P Abstract
Undo, Redo Cmd - > view a -
Figure 5. a) Context-free grammar editor b) Lifting transformations

Definition 1 (Lifting of transformations) 0 :: T — (C — C) is a lifting of the set of
admissible transformations T C A — Ato C,ifn ((0t)c) = t(wc)forallt €T and
¢ € C. This lifting is said to be uniform if moreovert; (mc) = ty (mc) = 0t1c =
0 t2 C.

This corresponds to the view update problem where we explicitly take into account the
transformation of the abstract view, an aspect that is encapsulated in the language defined
in [5] for bi-directional tree transformations. We guarantee that the concrete view ¢’ € C
can be obtained unambiguously by applying the lifting 6 on the transformation ¢ and on
the concrete view ¢ (0 t ¢), such that 7 ¢/ = a’ where a’ = t a and 7 ¢ = a. When an action
t is applied on the current abstract view, the corresponding transformation t' :: C' — C
obtained by 6 ¢ is instantly sent to the concrete view editor which modifies the structure
of the object being edited. The projection 7 is also applied to the new concrete view to
refresh the state of the abstract view editor with a’.

5. Conclusion and further work

We have introduced a small Domain Specific Language Embedded in Haskell for in-
teractive structure editing using the concept of monads. We have illustrated this DSL by
providing a batch editing environment for tree-structured data described by context-free
grammars, and a solution for the view update problem. A complex structured document
is intentionally represented as a tree decorated with attributes characterised by an attri-
bute grammar as described in [4]. Therefore, we would like to enrich our DSL by a set
of functional combinators (similar to the functional monadic parser combinators [3, 10]

CARI 2008 - MAROC
- 717 -

o

Cari 2008+ 22/08/08 17:21 ©Page 718 $

and the editors combinators of O. Braun [2]) to provide a Domain Specific Language em-
bedded in Haskell for the encoding of attribute evaluators. Using these combinators the
programmer will specify his attribute grammar (mainly he will write the semantic rules)
but by doing so he will actually build an Haskell program for the corresponding evaluator
of attributes or even maybe for an associated interactive editor. The structure of arrows
of J. Hughes [9], a generalization of monads, and more specifically the new notation for
arrows introduced by R. Paterson [11] (similar to the do notation of monads) can be useful
in that respect.

6. Bibliographie

[11 E. BADOUEL, M. TCHOUPE TCHENDIJI, « Projections et cohérence de vues dans les gram-
maires algébriques », 8¢ CARI, novembre 2006, Cotonou, Bénin.

[2] O. BRAUN, « Editors combinators. improving the user interface. », Master’s thesis, University
of Munich, 2000.

[3] JEROEN FOKKER, « Functional parsers », Advanced Functional Programming ; First inter-
national Spring School on Advanced Functional Programming Techniques, pages 1-23 , may
1995. Springer (LNCS 925), Berlin, Heidelberg.

[4] B FOTSING TALLA, G. E. KOUAMOU, « Une approche formelle de description et de manipu-
lation des objets structurés mathématiques ». Revie ARIMA, 3(2), :pp 71-86, 2005.
[S] MICHAEL B. GREENWALD, JONATHAN T. MOORE, BENJAMIN C. PIERCE, ALAN

SCHMITT, « A language for bi-directional tree transformations », Technical Report MS-CIS-
03-08,, University of Pennsylvania, August 5, 2003.

[6] « Haskell, a purely functional language », http ://www.haskell.org.

[7] ZHENJIANG HU, SHIN-CHENG MU, MASATO TAKEOCHI, « A programmable editor for deve-
loping structured documents based on bidirectional transformations », In Proceedings of ACM
SIGPLAN 2004 Symposium on Partial Evaluation and Program Manipulation, Verona, Italy,
August 2004. ACM Press.

[8] GERARD HUET, « The zipper », Journal of Functional Programming,n°® 7(5) : 549-554, 1997.
Functional Pearl.

[9] JOHN HUGHES. « Generalising monads to arrows ». Science of Computer Programming, 37(1-
3), :67-111, 2000.

[10] G. HuTTON, E. MEIJER, « Monadic parsing in Haskell », Journal of Functional Program-
ming, n° 8(4) :437-444, 1998.

[11] ROSS PATERSON, « A New Notation for Arrows », Department of Computing, City Univer-
sity, London.

[12] BERNARD SUFRIN, OEGE DE MOOR, « Modeless structure editing », Programming Research
Group, 1999.

[13] G. SzwiLLUS, L. NEAL, « Structure-based editors and environments », Academic Press,
1996.

CARI 2008 - MAROC
- 718 -

