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Abstract. We are interested in the identification of dielectric inclusions embedded into
a homogeneous medium from measurements of the total electromagnetic Cauchy data (i.e.
tangential electric and magnetic fields) on the boundary of this medium at a fixed frequency and
for several incident waves. We shall consider the cases where the size of the inclusions is small
compared to the wavelength. This configuration is typically the case, for instance, of imaging
experiments based on microwaves used to detect malignancies or tumors.

We propose here the use of an algorithm that combines ideas from samplings methods
(Linear Sampling, Factorization method, MUSIC) with the reciprocity gap concept and that
was first introduced by Colton-Haddar [3] for the reconstruction of extended targets. The main
advantage of this algorithm is that it does not require the evaluation the full background Green
tensor (as required by the Linear Sampling method), nor the subtraction of the Dirichlet to
Neumann operator of the medium (as required by the Factorization method). The Dirichlet to
Neumann operator is implicitly removed when evaluating the reciprocity gap functional.

The main focuses of our contribution are:

eIndicate how one can remove the approximation argument used in the case of extended
targets when the small inclusion asymptotic regime is valid: one obtains an exact
characterization of the location of small objects from the range of constructed sampling
operator.

eldentify some physical properties of the dielectric (those contained in the amplitude of the
first asymptotic term) from the indicator function and the used family of parametrization
(single layer potentials, Herglotz waves, ...).

We shall restrict ourselves to a 2-D setting of the problem and consider the cases of
both monopole-source and dipole-source asymptotic behaviors. Numerical tests are given to
demonstrate the efficiency of the algorithm and evaluate its resolution and robustness with
respect to the measurement noise. We shall also discuss the validity of our approach with
respect to the dielectric sizes.

1. Introduction

We consider a bounded domain Q of IR? with sufficiently smooth boundary T, the place where
we will carry out the measures, holding a homogeneous environment of electrical permittivity
€o and magnetic permeability po with waves number k& which can be complex for an absorbent
environment, containing m small inclusions D} = z; + aB; where z; represent the center, a the
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size of the inclusion that we will tends to 0 and B; is a bounded smooth domain (C*°) containing
the origin with electrical permittivity €; and magnetic permeability u; for j = 1,...,m. If u’ is
an incident point source located in o € ¥ where ¥ is a boundary of IR?\ Q, u’(z) = ® (o, z)
where ®(zg,y) = %H&(Mxo —y|) is the Green function solution of

Ay®(z0,y) + k*®(20,y) = —04,(y) dans IR?
fim 322 ke - 0 (1)

r=|z|—o00 (a

where Hél) is the Hankel function of first kind of order 0.
Then the direct diffraction problem is to find u, € H} (IR?) solution of

V(-H%Vua) +w2equq = 0 dans IR? (2)
1, 0ul
li (=2 —dkul) = 0
r:|alc\rr—l>oor2( or ! ua) (3)
Where '
Ug = u'+ud (4)
and p, is the magnetic permeability function, piecewise constant defined by:
_J omo si oz e IR*\UJL,D§
o) = { pj si x € D§, j=1,...,m (5)

and €, is the electric permittivity function piecewise constant defined by:

_J e si =z e IR*\UL DY
€a() = { e st z € D}, j=1,.,m (6)
u}, is the scattering field, w is the frequency and % is the waves number in free space.
From [1] the scattering field u$, has the asymptotique behavior when the size « of the inclusions
tends to 0:

m - . . .
uh =a’y [’yZV@(a:,zj) . Mj(%)Vu’(zj) + |Bj|k*ylut (2))®(z, 2;) | + o(a?) (7
j=1

Where 'yf; = ﬁg —1,v = %07- —1 and Mj(%) is the polarization tensor of B;.
We ramark tﬁat when the inclusions have the same electric permittivities than {2, they behave
as a dipolar sources and when they have magnetic permeabilities than €, they behave like polar

sources.

2. Identification Process

We assume in this paragraph that the inclusions D, Dg, ..., DS, are with respectively electrical
permittivities €y, €2, ..., €, and with common magnetic permeability p; = po, j = 1,...,m. Let
u® = ®(xp, -) an incident point source located in g in ¥ where ¥ is a boundary outside Q. The
inverse problem is to identify the centres z; of the inclusions in € from the knowledge of the
total field u, = u’ + ug, and its normal derivative field measured on the boundary 9.
According to [1], when the size of inclusion is very small, the diffracted field u?, is approached
by @}, in the following manner:

m
@ = oY |Bj|k*yIu(2)®(z, 2;)
j=1
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We denote by U the set of the approximate total field and his normal derivative when zy describes

- ot
U= { (UQ(IEO, ')7 a—l/a(x()a )) » X0 € E}
v is the outer unit normal of the boundary 992 and by V the set of test functions solutions of
Helmholtz equation in Q\ U2, D

V= {U/AU + k%v = 0 dans Q \ U;-nle;‘}
We define the reciprocity gap functional R by:

R(u,v) = /an (u% ~U%> ds (u,v) € UxV
Let S the single-layer operator defined by:
S:I*X)—V: g+ Sy
where
S9(a) = [ @(z,9) gly) dsy) pours € 9
We denote for z € Qand zg € ¥

lZ(:BO) = R(u(l‘o,),@(z,)) (8)
Our problem consists for z € Q to find g € L?(Z) solution of:
R(u(zo,-), Sg) = l:(z0) V2o € X (9)
We have the following result
Theorem 1 The equation
R(u(zo,"), Sg) =l.(z0) Vao € & (10)

has a solution g if and only if z € {z;,j =1,...,m}

3. Numercal Results

In the previous paragraph we showed that the equation (9) has a solution if and only if z is the
center of one of the inclusions located in 2, we observe that if z = z;, then g, is proportional
to h, which is the orthogonal in L*(X) to the vectoriel subspace G spanned by ®(z;,.) 5 # jo-
More precisely,

g _ 1 hzjo
Zjo T
"N [ @G,) ey ) ds)

otherwise [|g.||z2(x) = +oo.
The linear sampling method consists to plot the contours of the function:

QO — IR
1

||gz||L2(2)
One observes peaks at the location of the small inclusions.

Z =

Remark 1 The identification of positions of the point sources allows us to numerically calculate
the intensity of this point, in fact, the numerical computation of 9z;, leads to the determination
of \j, through the equality
1
[ @00 9(9) dstw) = 5
b

Jjo
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8.1. Identification of inclusions

Test on the index of medium

In this section, we test the influence of the inclusions index in our inverse problem of
identification, Q is a square centred in (0,0) where the length of its side is 4\ with a fixed
index ng = 2, this medium contains two circular inclusions D; and Ds centred respectively
in 21 = (0.5,0) et 22 = (—0.5,0) and with the same ray r = 0.05, we fixed the index n; of
Di, n; = 3 and we vary the index ns of Dy, ne = 2.2, 2.4, 2.6, 2.8 and 3, the number of
the mesure points in the boundary of 2 is 240 points, the incident point sources number is 256
regularly ditributed in ¥ wich is represented by 4 segments round of ' and distant % from T
where the wave length in the free space is A = 1, the sampling points z of €2 are located in the
unit square 40 x 40 points.

In the figuresl,2 we plot the curve of the function defined by:

[-1,1] — IR

1

z=(z,0) » ——
(=:0) ||9z||L2(2)

For respectively noisy data 1% and 5% and we fixe for every curve the index of the inclusions.
This curves show that if the index of the inclusion is greater than the index of the medium 2
then it’s well detected and the size of the peaks are proportional to the index of the inclusions.

Figure 1. Test on the index Figure 2. Test on the index
, ng = 2, np = 3, ng = , ng = 2, np = 3, ng =
2.2, 2.4, 2.6, 2.8, 3, noise=1%. 2.2, 2.4, 2.6, 2.8, 3, noise=5%.

In the figures 3,4 and 5, D; is an inclusion with perfect conductivity (hight index) and Do
is an inclusion wich we vary its index: no = 3 + 4, 3 + 2¢ and 4 + 5%, the other parametre are
like the precedent tests the noise of the data is equal to 1%, we show that the inclusion D
is well detected and when the inclusion Dy becomes more absorbent its identification is more
precisly. In the figures 3,4, 5 and in the following figures the red points represent the peaks of
the function

Q— IR
1

Z
||gz||L2(E)

and this points represent the location of the small inclusion solution of our inverse problem.
Test on the size of inclusion

In figures 6,7 and 8 we test our algorithm when we vary the size of the inclusions. we consider

two circular inclusions D; and Ds, where z; = (0.5,0), 22 = (—0.5,0) and with same index
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Figure 3. nqg = 2, ny = Figure 4. ng = 2, ny = Figure 5. ng = 2, ny =

3 + ¢, nq1 =perfect inclusion. 3 + 24, n1 =perfect inclusion. 4 + 57, n; =perfect inclusion

n1 = ng = 3, we fixe the ray of D1 r; = 0.005 and we vary the ray of Dy ro = 0.002, 0.003, 0.004,
we keep the other parametre of these tests like the precedent tests the noise of the data is equal to
1%, we remark that when the size of the inclusion is very small we can’t detect it, it’s considered
like a noise for our algorithm.
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Figure 6. Influence de la . .
taille de Tinclusion, nq — Yiguwre 7. nq = 2, m = Figure 8. ng =2, n =
2 n = ng = 3 r = ng = 3, ™ = 0.005, T = N9 = 3, ™ = 0.005, T =
’ ’ 0.003. 0.004.

0.005, 9 = 0.002.

Polar sources

In figure 9 Q is a square centred in (0,0) where the length of its side is 4\ with a fixed
index ng = 1, this medium contains two polar sources S1(0.5,0.5) and S3(0,0.5) distant of
A

5 and with the same intensity. we generate syntheticly the Cauchy data in the boundary

evaluate in 400 points of mesures. the incident field u' = ®(zo,.) and the scattering field

m
u(z0,.) = Y Aj u'(z0, ;) u'(S},.), the number of zg is 256 wich are regularly ditributed in %
j=1

wich is represented by 4 segments round of I" and distant % from T, the linear sampling method
gives us a good result.
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Figure 9. d(S51,52) = %
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