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RESUME. On propose un algorithme d’optimisation simple et rapide pour contrdler 'écoulement d’un fluid. Notre ap-
proche est basée sur une analyse de sensibilité topologique. Il s’agit de I'étude de la variation d’'une fonction colt par
rapport a la perturbation du domaine par l'insertion d’un petit obstacle. Des résultats théoriques et numériques sont
donnésen 2D et 3 D.

ABSTRACT. We propose a simple and fast optimization algorithm for geometric control of fluid flow. Our approach is
based on a topological sensitivity analysis. It consists in studying the variation of a cost function with respect to the
insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.
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1. Introduction

Due to its importance in many applications involving fluid related technology [12, 17], the optimal
control of fluid flows has long been receiving considerable attention by engineers and mathematicians.
There is a wealth of literature on optimal control of flows through suction and injection of fluid along
domain boundaries, see e.g. [8, 13]. In the context of design, one of the first studies is found in [19]. It
is devoted to determine a minimum drag profile submerged in a homogeneous, steady, viscous fluid by
using optimal control theories for distributed parameter systems. Next, many shape optimization methods
are introduced to determine the design of minimum drag bodies [16, 20], diffusers [6], and airfoils [7]. The
majority of works dealing with optimal design of flow domains fall into the category of shape optimization
and are limited to determine the optimal shape of an existing boundary.

It is only recently that topological optimization has been developed and used in fluid design problems.
It can be used to design features within the domain allowing new boundaries to be introduced into the
design. In this context, one of the first approaches is proposed by Borvall and Petersson in [4]. They
implemented the relaxed material distribution approach to minimize the power dissipated in Stokes flow.
To approximate the no-slip condition along the solid-fluid interface they used a generalized Stokes problem
to model fluid flow throughout the domain. Later, this approach has been generalized by Guest and Prévast
in [10]. They treated the material phase as a porous medium where fluid flow is governed by Darcy’s law.
For impermeable solid material, the no-slip condition is simulated by using a small value for the material
permeability to obtain negligible fluid velocities at the nodes of solid elements. The flow regularization is
expressed as a system of equations ; Stokes flow governs in void elements and Darcy flow governs in solid
elements.

In this paper, we propose a new, fast and accurate optimization algorithm based on topological sensiti-
vity analysis [2, 3, 11, 14, 15, 21]. It consists in studying the variation of a cost function with respect to a
small topological perturbation of the fluid flow domain.

To present the basic idea, let us consider a domain 2 C IRY, d = 2,3 and a cost function i) =
J(Q,uq), where ug is the velocity field solution to Stokes problem defined in Q. For e > 0, let Q. =
O\ (z¢ + ew) be the fluid domain obtained by inserting a small obstacle z¢ + ew in €2, where o € 2 and
w C IR% is a fixed bounded domain containing the origin, whose boundary dw is connected and piecewise
of class C*. The topological sensitivity analysis method leads to an asymptotic expansion of the function j
in the following form :

3(Q2:) = 5(Q) + f(e)g(wo) + o(f(e)),

where f(e) is a scalar positive function going to zero with e. This expression is called the topological
asymptotic expansion and g is called the topological gradient. The function g is very easy to compute. In
order to minimize the cost function, the best location to insert a small obstacle in €2 is where g is negative.
In fact if g(zo) < 0, we have j(Q2:) < j(2) for small . Starting with this observation, a topological
optimization algorithm can then be constructed. The optimal design is obtained using an iterative process
building a sequence of geometries (1) with Qp = €. At the k*” iteration the topological gradient gy, is
computed in 2 and the new geometry {21 is obtained by inserting an obstable wy, in the domain €y, ;
Qi+1 = Qi \Wk. The obstacle wy, is defined by a level set curve of gy,

wi = {z € Qu, such that gx(x) < ¢ < 0},

where ¢, is chosen in such a way that the cost function j decreases as most as possible. This algorithm can
be seen as a descent method where the descent direction is determined by the topological sensitivity g and
the step length is given by the volume variation meas(Qx\Qk41).
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The paper is organized as follows. In section 2, we give a statement of the optimization problem. Section
3 is devoted to a topological sensitivity analysis for the Stokes equations. The obtained results are valid for
a large class of cost functions. Similar analysis is developed by Guillaume and Sidldris in [11]. Their
approach is based on an adaptation of the adjoint method and a domain truncation technique that provides
an equivalent formulation of the PDE in a fixed functional space. In this work, we derive a simplified
topological sensitivity analysis for the Stokes equations without using the truncation technique. In section

4, we present some numerical experiments showing the efficiency of our approach.

2. Topological optimization problem

Consider a viscous incompressible fluid flow in a bounded domain 2 C IRd, d = 2, 3. We assume that

the fluid flow is governed by the Stokes equations.

We denote by Q\@; the perturbed domain, obtained by inserting a small obstacle w, = xy + ew in the

initial domain flow €. In Q\@z, the velocity . and the pressure p. are solution to

—vAu. +Vp. =F inQ\w;
divu, =0 inQ\wz

u. =0 onl
u. =0 ondw..

(1]

where v is the (constant) fluid kinematic viscosity, and F' is a given body force per unit of mass. Note that

fore = 0, (ug , po) is solution to
—vAug+Vpy =F inQ

divug =0 inQ
ug =0 onl.

Consider now a design function j of the form
J(Q\w_s) = Js(ua)v

where J is defined on H'(Q\@;)? fore > 0

(2]

(3]

Our aim is to determine the optimal location of the obstacle w, in the domain €2 in order to minimize the

cost function J. (u.). Then, the optimization problem we consider is given as follows :
min J.(uc) such that, for some p.,
weCN

(ue, pe) is a solution of (1) in Q\w;.

To this end, we will derive a topological asymptotic expansion of the function j with respect to €.

(4]

3. Topological sensitivity analysis

In our topological sensitivity analysis, we have to distinguish the cases d = 2 and d = 3. This is due
to the fact that the fundamental solutions (£, II) to the Stokes equations in IR? and IR? have essentially

different asymptotic behaviour at infinity. We have
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p— T = — i =
B(y) = 5— (1+ 67.er), I(y) = e ifd=3,

= — | — . T = — 1 =
E(y) = pr— ( log(r)I + eye,. ), II(y) 53 ifd=2,

with 7 = ||y, e, = y/r and €T is the transposed vector of e,..

Next we assume that J. satisfies the following assumption.

Assumption 3.1 i) Jy is differentiable with respect to u, its derivative being denoted by D Jy(u).
ii) There exists a real number §J such thatV e > 0

Je(ue) — Jo(uo) = DJo(uo)(Ue — uo) + f(€)0J + o(e), [5]

where f is a scalar function and . is an extension of u. in Q respectively defined by :

_J e if d=3, ~ | ou. inQ\ws,
f(e)—{ —1/log(e) if d=2, ue—{ 0  inwe.
A- The three dimensional case : Let (U, P) denote a solution to
—vAU+VP =0 in R*\@
divU =0 in R*\w (6]
U — 90 at oo
U = —up(zg) onodw.

We start the derivation of the topological asymptotic expansion with the following estimate of the H ! (Q\wz)
norm of u.(x) — up(x) — U(z/e). This estimate plays a crucial role in the derivation of our topological
asymptotic expansion. It describes the velocity perturbation caused by the presence of the small obstacle
We.

Proposition 3.1 There exists ¢ > 0, independent of €, such that for all € > 0 we have
l[ue(x) = uo(x) = Ulz/e)ll) q\ar < ce.

The following corollary follows from Proposition 3.1. It gives the behaviour of the velocity u. when inser-
ting an obstacle. The principal term of this perturbation is given by the function U, solution to (6).

Corollary 3.1 We have

ue(z) = up(x) + U(z/e) + O(e), =€ Q\w:..
We are now ready to derive the topological asymptotic expansion of the cost function j. It consists in
computing the variation j(Q\wz) — j(2) when inserting a small obstacle inside the domain. The leading

term of this variation involves the solution to a boundary integral equation (see Theorem 3.1).

Theorem 3.1 [1, 14] If the assumption 3.1 holds, the function j has the following asymptotic expansion

j@e) =)+ [(- [

1(y) ds()) vo(o) + 67| + o),
ow

CARI 2008 - MAROC
- 310 -



Cari 2008+ 22/08/08 17:16 Page 311 $

where vy is the solution to the adjoint problem

—vAvg+Vq =-DJ(ug) inQ
divvyy =0 in )
v9 =0 onT.

The functionn € H~/2(dw)? is the solution to the following boundary integral equation
/ E(y —x)n(x) ds(z) = —uo(zo), Vy € dw.
. . L .. 3v
In the particular case where w = B(0, 1), the density 7 is given explicitly n(y) = — 7“0(‘%0)’ Yy € Ow.
Corollary 3.2 [fw = B(0,1), under the assumption 3.1 we have
JO\TD) = §(Q) + & {67w o (o) vo (o) + M} +o(e).
B- The two dimensional case : In the two dimensional case we have the following asymptotic expansion.

Theorem 3.2 If'the assumption 3.1 holds, j admits the following asymptotic expansion

[47w uo(zg).vo (o) + 6J} + 0(_—1).

JONTE) = () + =

-1
log(e)

4. Numerical examples

We consider a tank (2 filled with a viscous and incompressible fluid. The aim is to determine the optimal
shape of the fluid flow domain minimizing a given objective function.

Our implementation is based on the following optimization algorithm. We apply an iterative process to
build a sequence of geometries (Q)x>0 With Qo = (2. At the k'" iteration the topological gradient gy is
computed in {2 and the new geometry (2 is obtained by inserting an obstacle wy, in the domain € ;
Qi+1 = Qi \Wk. The obstacle wy, is defined by a level set curve of g,

wi = {z € Q, such that gx(z) < ¢ < 0},

where ¢, is chosen in such a way that the cost function j decreases as much as possible.
The algorithm :

e Initialization : choose g = €2, and set £ = 0.
e Repeat until g > 0in Qy :

- solve the Stokes equations in €2,

- solve the associated adjoint problem in 2,

- compute the topological sensitivity g (z) Vo € Qy,
- determine the obstacle wy,,

- set Qg1 = O \Wk,
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ok «—k+1.

This algorithm can be seen as a descent method where the descent direction is determined by the topo-
logical sensitivity g and the step length is given by the volume variation meas(Q;\Q+1)-

A- First example : Approximation of a wanted flow. The aim is to determine the optimal shape O* C (2
of the fluid flow domain such that the velocity up~, solution to the Stokes equations in O*, approximate
a wanted flow w, defined in a fixed domain €2,,, C Q. The optimal shape O* can be characterized as the
solution to the following topological optimization problem

min lup — wq|?dx,
oce Jg.

where ue is the solution to the Stokes equations in O C 2. This test is treated in two and three dimensional
cases. In 2D, the tank Q = [0, 1.5] x [0, 1], the domain ,,, = [0, 1.5] x [0.8, 1] and the velocity field wg is
defined by : wg = (1,0) in 2, and wg = (0,0) elsewhere. The numerical results are described in Figure
1. A 3D extension of this case is presented in Figure 2.

un=0
“r o, = tgetfow —x
i 4

u= (00)
u=(00)

i
=00 w00 2

L= T

&
£
=

u=(00)

(a) The initial geometry 2 (b) The velocity field (c) The optimal domain (d) The velocity field in
in the initial domain is obtained in only 3 ite- the obtained domain
rations

Figure 1. Approximation of a wanted flow : 2D case

u=(0.0.0)

(a) The initial geometry (b) The velocity field (c) The optimal domain is (d) The velocity field
in the initial domain obtained in only 4 itera- in the obtained domain
tions

Figure 2. Approximation of a wanted flow : 3D case

B- Second example : Maximizing velocity in a fixed zones. Here the aim is to maximize the fluid flow
velocity in Q,, = UxQF, C Q (fixed zones) using a topological perturbation of the domain. The optimal
domain of the fluid flow can be characterized as solution of the following problem

max/ lup|?dx,
Qm

oca

where uo is the solution to the Stokes equations in O.

Two 3D examples are considered. The first case is described in Figure 3. The inflow I';;, and the outflow
Tout (see Figure 3(a)) are defined by : I';,, = [0,1.5] x 0 x [0.4,0.6], I'sye = [0,1.5] x 0 x [0.4,0.6].
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The domain €2, = Q}, UQZ, with Q}, = [0,1.5] x [0,1] x [0.9,1] and Q2, = [0,1.5] x [0,1] x [0,0.1].

™m>
The optimal domain is obtained in four iterations (see Figure 3(c)).
The second one is described in Figure 4. Here we have used the same 3D tank considered in the last case
but with different I';;,, T'syr and €, (see Figure 4(a)). The optimal domain is obtained in five iterations
(see Figure 4(b)).

u=(0.00)
Tin
w=(1,00)

u=(0.0.0)

(a) The initial geometry (b) Cut of the initial velocity

(c) The optimal domain (d) 2D cuts of the optimal velocity

Figure 3. Maximizing velocity in a fixed zones : first case

u=(0.0.0)
[

u=0,0.0)

Fout
u=(1.0.0)

o ————— N | w000

u=(0.0.0)

S — )
I e —

(a) The initial geometry (b) The optimal geometry

(c) Vertical cut of the velo- (d) Horizontal cut of velocity in the obtai-
city in the obtained domain ned domain

Figure 4. Maximizing velocity in a fixed zones : second case
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