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RESUME. Les équations de Stokes instationnaires sont discrétisées par le schéma de projection de
Chorin en utilisant la méthode des éléments finis de Galerkin continue en temps et en espace. Dans
le but de construire un algorithme adaptatif combinant 'approximation en temps et en espace, nous
développons des estimateurs de I'erreur résiduelle.

ABSTRACT. The time-dependent Stokes equations are discretized with Chorin’s projection scheme
by using continuous Galerkin finite element method in time and space. In order to built an adaptive
algorithm that combines time and space approximation, we derive residual error estimators.

MOTS-CLES : équations de Stokes, schéma de projection de Chorin, éléments finis de Galerkin,
estimateurs de I'erreur résiduelle.

KEYWORDS : Stokes equations, Chorin’s projection scheme, Galerkin finite element, residual error
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1. Introduction

Let  be a bounded connected domain of R? (d = 2, 3), with Lipschitz continuous
boundary I'. We consider the time-dependent Stokes problem in the primitive variables

opu—vAu+Vp=f in 0x]0,T7,
Vu=0 in Ox]0,T7,
(1
u=20 on I'x]0, T,
Uji—p = Up in Q.

\

The unknowns are the velocity u = u(z,t) and the pressure p = p(x,t); the data are
f = f(x,t) which represent a prescribed body force, and ug = ug(x) is the initial velo-
city, while v is the kinematic viscosity assumed to be a positive constant. For the sake of
simplicity, we consider a homogenous Dirichlet boundary condition.

In the late 1960s, the Chorin’s scheme or projection method was introduced to overcome
the numerical difficulty linked to the incompressibility constraint that relates both velo-
city and pressure. The interesting feature of this method, consists in solving at each time
step, a sequence of uncoupled elliptic problems for velocity and pressure. However, this
splitting involves an error that is essentially caused by the non-physical boundary condi-
tion on the pressure, which prevents the scheme to have optimal convergence behavior. In
this context, the error analysis given by Rannacher [9] and that by Prohl [8], show a first
order rate of convergence in time for the velocity with only a half order for the pressure
in the L2-norm. The authors had indeed conjectured that, a first order rate of convergence
for the pressure is ibtained at the interior of {2, by revealing the existence of boundary
layers with a prescribed thickness on I

Our purpose is an attempt for a best convergence rate on both pressure and velocity in
appropriate norms. To this end, we perform a posteriori analysis on time and space dis-
cretization errors induced by Chorin’s scheme. In this context, a first analysis of the spatial
error has been carried out in [7], by using a continuous finite-element approach. Here, we
complete the previous analysis by taking into account the time error in the framework of
a continuous and piecewise affine approach. The key observation in the present analysis,
consists in re-interpreting the projection method as a pressure stabilization method, where
the time-step is viewed as a perturbation parameter. For this, we consider a single repre-
sentation of the velocity, sought at the prediction step which stands for the diffusion part
of the Stokes equations.

Using the standard residual technique and by separating the errors due to time and space
discretization [1, 3], we derive two distinct family of time estimators. They are respecti-
vely defined in terms of the discrete velocity and pressure. In particular, we identify the
first family with the estimators of [3], obtained for the backward Euler scheme. In addi-
tion, they can be defined independently of the spatial discretization method. We note that
they are local with respect to time-step, and global with respect to space variables.

Then, we present how the error is bounded from above and from below by the Hilbertian
sum of such estimators up to some terms involving the data. Finally, in order to control
this error, we propose a general algorithm that combines adaptation between time step
and mesh size.
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2. The projection scheme

2.1. Preliminaries and notations
For convenience, we make use of the following notations :
X=H®Q)! X' =H'DY Y=L*Q)* and M= H"(Q)NLIQ),

where L3(©2) denotes the subspace of L?($2) with zero mean value on . As usual, H} (Q)
is equipped with the semi-norm |-|; of H'($2) and L?($2) with the norm ||-||. In particular,
| - |1 is a norm on M. We introduce the subspaces,

V={veX; V.v=0inQ} and H={veY; V.-v=0inQ, vi=0onT}.

We note the continuous and dense imbeddings V.Cc H = H' C V’, where V/ and H’
are respectively the duals of V and H. For any ¢, 0 < t < T, we define the energy norm
on L2(0,t; X) N C%(0,t;Y) by

v = (vl +v [ t vo)lds) -

In the following, we assume € satisfying the H2-ellipticity property, which implies that
the solution of the stationnary Stokes problem with homogeneous Dirichlet data on I" to
be regular. Furthermore, if the data (ug, f) are given into V x L2(0,T;Y)NC%(0,T; X'),
then problem (1) has a unique solution [2], such that

(u,p) € L*(0,T; H*(Q)Y) N H*(0,T;Y) x L*(0,T; M), 0y L*(0,T;H).

and forall t € [0, 77,

-

2

1908l 20,00vy < 2MEllz2(0.x7) + V¥ [uollo and [w)(8) < (v~ 1€ 20 1xr) + 00l

2.2. The semi-discrete version
Let N be anintegerand 0 = ¢y < t; < --- < ¢ty = T a partition of [0, T, with step

Tn

size 7, = t,, — t,—1 such that the parameter o, = max is bounded.

2<n<N Tp_1
To approximately solve (1) at time ¢,, in the framework of time adaptability, the Chorin’s
algorithm splits each iteration step into two parts. Start with u® = u(0) and given u" 1,
we look for a provisional velocity " in X, solution to

" — un—l
—— —vAGW"=f" in Q,

™ vau (2)
u” =0 on I,

then, we search for a correction u”™ in H and a pressure ®™ in M, solutions to the Darcy

problem
n __ &n
TR 4ven=0 in Q
Tn
Voum =0 in Q )
u"-n7=0 on T,
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where 7 denote the normal unit vector external to " and £ an approximation of f(¢,).
The sequence ®™ is also a solution to a homogeneous Poisson-Neumann problem. In
practice, the inconsistent boundary condition satisfied by ®'* leads to boundary layers,
which prevents the scheme to be a first order in time for the pressure. However, despite this
incompatibility condition, (@", ") (or (u”, ")) remains an admissible appproximation
to the solution of (1) in appropriate norms [9].

2.3. The fully-discrete version

For simplicity, we assume that 2 is a polygone (d=2) or a polyhedron (d=3). Then,
as we intend to use mesh adaptivity at each time step, we denote by {7," }o<n<n the
triangulations of €2, made up triangles (d=2) or tetrahedra (d=3), with maximal diameter
h. These triangulations are assumed to have the regularity properties established in [11].
Next, in the framework of a continuous Galerkin finite element approximation, we consi-
der the sequence of subspaces (X;’, Y;"", M} )o<n<n built over the meshes {7, }o<n<n
and contained in (X, Y, M'). Now, the discrete counterpart of (2)-(3) read as follow :
given one approximation uj of uo, find (4}, u}, 7 )1<n<n in (X x Yy x M)V such
that, forn=1... NN,

@y, vh) + v (Vay, Vvy) = () vi) + m(E", v x x - Vv € X7, 4

(i, vi) + (VO vi,) = (G}, va) Vv € Y], (5)
(u}!,Van) =0 Vg, € M].

It is proved! that, for a convenient choice of Y}", the unknown ®7 is also solution to the
discrete Poisson-Neumann problem and consequently the space Y:’ become unusefull in
practice. Thus, the main unknowns of the algorithm (4)-(5) will be then (@}, ®}!). Further-
more, it is argued in [5] that is not permitted to use equal order polynomial interpolation

for X7’ and M}’ which should satisfy the compatibility condition of Babuska-Brezzi.

3. Residual based error estimators

We present here, the estimators that will be used for the adaptation strategy to control
both time and space discretization errors. Following the analysis of [1, 3], we exhibit two
families of error estimators. The idea is based onto the decoupling between the time and
space discretization error. In this way, we first derive the estimators linked with the time
error between the solution of (1) and that of (2)-(3), then the estimators associated with
the spatial error between the solution of (2)-(3) and that of (4)-(5).

In order to develop the time error estimators, we use the continuous Galerkin method by
considering the functions (i, u,) which are affine on each interval [t,,—1,t,], 1 <n <
N, and equal to the velocities (4", u™) at ¢,,, 0 < n < N.In this case, we observe that we
have the relation 01, —u, = 7,$*, satisfied on each [¢,_1,¢,], 1 <n < N, where ®* de-
notes the discontinuous affine function ®* (t) = 2=t $n—1 4 =Zinot t” L(®n — T”—chD” b,
It is also usefull to define, by the same way, the "discrete counterpart of the “functions

1. see the analysis of [6] for the incremental projection scheme.
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(@, @) associated to the discrete solutions (@1}, P}')o<n<n, which we denote by (s, 7).
Then, we check that (@i, @) is solution to

O, — VAT, + VO =F" in  Qx]tp—1,tn],
V-, —1,A®* =0 in Qx]tn_1,t], (6)
i, =0, V®*.7=0 on I'x|t,_1,tn],

where the functional 7 = " — vA(@i, — @") + V(®% — =2$"~!). The problem (6)
can be viewed as a singularly perturbed system? with perturbation parameter 7,,. Then, by
substracting (1) from (6), we derive the first family of time error estimators,

- Tn ? ~ ~n— 1 n n—
Cn = (V§> ’ ’uZ - 1|1 and (p = §|Tn(bh — Tn—1®), 1|1-
In particular, we denote by S,, = ||f — £\ L2(t,,_, t.;x7) the error on the data f.

Next, the second family of error estimators related to space discretization, is derived from
the difference between the schemes (2)-(3) and (4)-(5). In fact, forn = 1... N and for
each K € 7,", we define the local error estimators

ar_gn—t! - v 1 ~
e = e | = Bt — movept w42 Y hRlEEVE; s,
’ ECOKNQ
- 1 1 N o=
and 1o, i = hicl| 2-V 0 = APlo.xc + 3 > hpliver - dsllos-
ECOKNQ

Here, hi and hp denote respectively the diameter of K and the diameter of the side or
face £ C 0K, [-] denote the jump of a given function across F in the direction of its
unit normal vector 7ig external to K and f;’ is an approximation of the data f”. For a
simple convenience, we respectively denote by 7, i, and S,, the Hilbertian sum on all
the K € 7, of s, i, N, i and g ||£ — £ 0, k-

4. Equivalence with the error

Now, we establish how the estimators can bound the error from below and from above
for a convenient norm. In this context, we introduce for m = 1... N, the quantities :

ZmT:{Zéi} P C’mT:{Zgi} 5 SmT:{ZS?L} )

n=1 n=1 n=1

m 3 m 3 m 3
ﬁmh = {ZTnﬁi} 5y NImh = {Z Tfmi} and Smh = {ZTnSZ} 5
n=1 n=1

n=1

we also define the global errors in time and space respectively by :

m t 3
E-,—(tm) = [u — ﬁq—](tm) + {ZT?'L/ |p - @:ﬁdt} ?
n=1 tn—1

2. cf. [10] for similar analysis on the convergence properties in time of the projection scheme and its
variants
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